Рефераты. Повышение эксплуатационной и технической надежности автомобилей на ООО "ИГАТП"






Устройство (рисунок 3.1 в) состоит из корпуса 1 с магнитом 2 для крепления устройства к картеру, воронки 3 с фиксатором и полым стержнем 5, на одном конце которого укреплен маховик 6, на другом - головка для отворачивания сливных пробок в виде кареток 7 на общих направляющих 8. При этом каждая каретка снабжена соединительной осью 9 и подпружиненными между собой кулачками 10, образующими захват. На внутренней стороне воронки образован копир.

Данные виды воронок имеют ряд недостатков:

-подвод воронок к агрегатам транспортного средства производится за счет физической силы человека;

-в процессе слива масла их необходимо поддерживать рукой;

-последние две конструкции сложны в изготовлении.

Известно стационарное устройство для слива масла с применением сливной воронки, рисунок 3.2. Устройство состоит из приемной воронки 1, подвижных осевых шарниров 2, несущей рамы 3, резинового шланга 4 и накопительного бака 5.


Рисунок 3.2 – Схема стационарного устройства для слива масла с применением сливной воронки


Устройство работает следующим образом: к агрегату автомобиля установленному на смотровую канаву в радиусе поворота устройства, подводится приемная воронка 1, непосредственно под сливную пробку, слесарь отвинчивает пробку с помощью обхватывающего ключа, масло через сливное отверстие попадает на сливную воронку 1, затем по резиновому шлангу 4 поступает в накопительную ёмкость 5.

Вышеуказанное стационарное устройство для слива масла с применением сливной воронки не даёт возможности подвода воронки к обслуживаемому агрегату, что является причиной разбрызгивания масла и повышенному травматизму при выполнении смазочно-заправочных работ, не обеспечивает возможности подвода воронки к труднодоступным агрегатам силовой передачи автомобиля

Основным недостатком вышеуказанного устройства является необходимость перемещения автомобиля для слива масла с каждого последующего агрегата.

 В данном дипломном проекте предлагается конструкторская разработка мобильного устройства для слива масла из агрегатов силовой передачи транспортных средств. Данное устройство обеспечивает слив масла из силовых агрегатов автомобиля на смотровой канаве без перемещения автомобиля, что сокращает трудоёмкость проведения технического обслуживания и повышает производительность труда при выполнении смазочно-заправочных работ.


3.2 Краткое описание устройства и принцип его работы


Предлагаемое устройство для слива масла из силовых агрегатов транспортных средств приведено на рисунке 3.3. Устройство применяется при выполнении смазочно-заправочных операций первого и второго технического обслуживания, сезонного технического обслуживания, а так же при текущем и капитальном ремонте силовых агрегатов транспортных средств.


Рисунок 3.3 – Схема мобильного устройства для слива масла из узлов и агрегатов.


Устройство состоит из сливной воронки 1, поворотной трапеции, подвижной тележки 10, направляющего желоба 11 и накопительного бака 12.

Устройство содержит сливную воронку 1, с которой соединен сливной гибкий шланг 5. Воронка состоит из флянца соосно приваренного к трубе, внутри которого установлен вороток 4. Вороток имеет на торце квадратный профиль, на который устанавливается насадка 2, под размер соответствующей сливной пробки агрегата. Звено 3 при помощи шарниров соединено с наружными концами подвижных штоков 6 направляющего механизма, установленных с возможностью продольного перемещения в наружных обоймах 7. Внутренние концы обойм при помощи шарниров соединены с втулкой 8 опоры, установленной с возможностью поворота в горизонтальной плоскости на пальце 9, закрепленном на подвижной тележке 10. Тележка 10 передвигается вдоль направляющего желоба 4 на роликах. Желоб состоит из швеллера и приваренных к нему уголков, монтируется в стенку ямы под наклоном в сторону накопительного бака и заливается бетоном. Желоб с помощью трубопровода сообщается с накопительным баком 12. Накопительный бак, углубленный в землю, устанавливается на улице. Одна из обойм соединена с поворотной втулкой при помощи прижимного механизма, который выполнен в виде пружины.

Технические характеристики устройства

1. Максимальная высота подъема воронки - 600 мм.

2. Максимальный вылет устройства - 1150 мм.

3. Угол поворота трапеции - 180 град.

4. Угол наклона воронки во фронтальной плоскости ± 30 град.

5. Минимальный диаметр проходного сечения маслопровода - 26 мм.

6. Емкость накопительного бака - 1000 л.

Данное устройство может использоваться как для слива отработанного масла, так и для промывки агрегатов транспортных средств и гидросистемы.

Принцип работы мобильного устройства для слива масла (см. ЭМ ДП.03.017.000.Д6).

При необходимости слива масла из агрегата транспортного средства автомобиль устанавливается на смотровую канаву. Выполнив все подготовительные работы, слесарь подбирает насадку под сливную пробку обслуживаемого агрегата, извлекает устройство из ниши направляющего желоба, перекатывает тележку к обслуживаемому агрегату, ставит насадку на вороток, незначительно ослабляет затяжку фиксирующих устройств и подводит воронку к сливной пробке, соединив насадку со сливной пробкой, фиксирует положение трапеции, одновременно удерживая воронку в исходном положении, дотягивает гайки фиксирующего устройства, отвинчивает воротком сливную пробку, опускает вороток до упора стопорного кольца воротка. Масло через сливное отверстие агрегата поступает в воронку под действием силы тяжести, далее по гибкому шлангу через поворотную стойку попадает в направляющий желоб, далее по желобу масло поступает в накопительный бак. После прекращения поступления масла в сливную воронку, слесарь с помощью воротка завинчивает сливную пробку, ослабляет фиксирующее устройство и убирает поворотную трапецию в нишу желоба, если отсутствует необходимость слива масла из других агрегатов автомобиля.

Преимуществом данного устройства является то, что обеспечивается возможность передвижения сливного устройства вдоль смотровой канавы с помощью подвижной тележки. За счет шарового шарнира в соединении воронки и поворотной трапеции имеется возможность отвинчивания сливных пробок оси, которых находятся под углом к горизонтальной и вертикальной плоскости, устройство занимает мало места, достаточно простое в эксплуатации и обслуживании.


3.4 Расчет конструкторской разработки


Рассчитываем на прочность наиболее нагруженные части и соединения, для определения надежности и работоспособности конструкции в целом. Принимаем, что трапеция находится в горизонтальном положении, и на неё действует сила Q = 100 H, с учетом неравномерно распределенной массы поворотного устройства 6,1 кг. В таком случае её можно заменить неподвижной балкой. Расчет ведем в наихудшем положении устройства, которое показано на рисунке 3.4


Рисунок 3.4 – Схема действия сил на устройство, эпюры моментов


Т1` = Т1 sin α, (3.1)


тогда


Т1 = Т1`/ sin α. (3.2)


Для нахождения составляющей Т1` составляем уравнение моментов относительно точки В.


Σ МВ = 0 (3.3)

Q L– T1`H1 = 0, (3.4)


где: Q – наибольший вес маслоуловителя, Q = 100 H;

Н1 – расстояние от ушка до оси крепления обоймы, Н1 = 0,15 м;

T1` – вертикальная составляющая реакции Т1;

T1 – реакция в пружине, Н;

L – максимальный вылет трапеции с маслоуловителем, L = 1,15 м.


T1` = Q l/ H1 (3.5)

T1` = 100×1,15 /0,15 = 766,7 Н.

Т1 = 766,7 / sin 45 = 1084,4 Н.


Для нахождения реакции RB в оси обоймы составляем уравнение моментов относительно точки C.


Σ МС = 0 (3.6)

Q(l – H1) + RB H1 = 0 (3.7)

RB = - Q(l – H1) / H1 (3.8)

RB = - 100×(1,15 – 0,15) / 0,15 = -666,7 Н.


3.4.1 Расчет обоймы на прочность

Необходимо выполнение условия прочности:

, (3.9)


где [σ] – допускаемое напряжение, МПа, [σ] = 120 МПа;

WZ – полярный момент сопротивления, м3;

 – максимальный изгибающий момент, Нм.

Максимальный изгибающий момент:


 (3.10)

 Нм


Полярный момент сопротивления


 (3.11)


где d – наружный диаметр обоймы, d = 32,5 мм;

d1 – внутренний диаметр обоймы, d1 = 17,5 мм.

.

Тогда

2,02 МПа ≤ 120 МПа

Условие прочности выполняется.

3.4.2 Расчет пружины

Пружина работает в условиях кручения и сдвига. Схема действия сил и крутящих моментов на проволоку пружины показана на рисунке 3.5.

Рисунок 3.5 – Схема действия сил и крутящих моментов на проволоку пружины


Должно выполняться условие прочности:


 (3.12)


где  – напряжение на сдвиг, МПа;

 – напряжение на кручение, МПа;

 – максимально допустимое напряжение, МПа.

Напряжение на сдвиг определим по формуле:


 (3.13)


где F – площадь поперечного сечения проволоки пружины, м2.


 (3.14)


где d – диаметр проволоки пружины, м2.

 

 


Напряжение на кручение определим по формуле:


 (3.15)


где Мк – крутящий момент, Нм;

Wр – полярный момент сопротивления, м3.

Крутящий момент равен


 (3.16)


где R – радиус пружины, м, R = 0,013 м.

 

Полярный момент найдем по формуле:

 (3.17)

 


Напряжение на кручение


 

(3.18)


где  – предел текучести стали, для пружинной стали


 

Тогда

 

.

Условие прочности выполняется.


3.4.3 Расчет осей роликов на срез

Чтобы рассчитать диаметр осей роликов, необходимо задаться максимально возможной действующей на них в процессе работы нагрузкой.

Максимальная сила будет действовать на оси в крайнем, (горизонтальном) положении поворотной трапеции и действующей на неё силой.

На рисунке 3.6 изображена схема сил действующих на балку в крайнем положении.


Рисунок 3.6 – Схема сил, действующих на балку в крайнем положении.


Необходимо определить реакцию А действующую на ось в опасном сечении, так называемую перерезывающую силу.

Чтобы определить реакцию А необходимо составить уравнение моментов относительно точки В.


SМ (В) Q · ( а + б ) - А · б = 0(3.19)

А= Р · ( а + б ) / б.

А = (100 · (1,15 + 0,12))/0,12 = 1058,3 Н.


Определим напряжение среза оси ролика.

Напряжение среза определяется по формуле:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.