Рефераты. Проект модернізації колії






Для вибору запобіжника необхідно брати значення пускової сили струму, яке орієнтовно в 5-7 разів більше номінального значення сили струму двигуна. В межах пускового процесу (до 10 секунд) запобіжник витримує силу струма, що перевищує його номінальну.

В даному дипломному проекті розглянемо занулення електричного рейкосвердла типу 1024-Б. Він має асинхронний двигун потужністю 0,75кВт. Рейкосвердл живиться від пересувної електростанції напруженням 220В. Коефіцієнт корисної дії двигуна η = 0,8, коефіцієнт потужності cosØ = 0,85, кратність пускового струму Кj = 5, довготривалість пуску до 10 секунд. Відгалуження виконано мідними проводами з гумовою ізоляцією, що проложені відкрито.

Плавка вставка повинна витримати не перегораючи пусковий струм двигуна, її номінальний струм обчислюється за формулою



, (6.1)


де: 1П – пусковий струм двигуна;

коефіцієнт а=2,5, оскільки пуск двигуна продовжується не більше 10 секунд.


, (6.2)


де: Kj – кратність пускового струму (Kj = 5);

Іном – номінальний струм двигуна;


, (6.3)


де: U – лінійне напруження (U=220B);

РНОМ – потужність (РНОМ=0,75 кВт);

η – коефіцієнт корисної дії (η = 0,8);

cosØ – коефіцієнт потужності (cos0 = 0,85).


А

А

А


Приймаю найближчу плавку вставку, для якої А. Обрано триполюсний пакетний вимикач і 3 запобіжника ПР-2 тип ЯВП 3-15, виконання закрите (захищене з ущільненням).

Переріз проводу визначається за допустимим для нього струмом, величина якого визначається із умови


; , (6.4)


де: 3 – коефіцієнт надійності при захисті плавкими вставками, прийнятий у відповідності з Правилами улаштування електроустановок (ПУЕ)


А; А


Беремо найбільшу величину з отриманих ІД0ІІ > 0,0029A. Прийнято переріз проводу 1,5 мм , тип ПР, для якого допустимий струм дорівнює 23А.


7. ВИЗНАЧЕННЯ ТЕМПЕРАТУРНИХ УМОВ УЛАШТУВАННЯ БЕЗСТИКОВОЇ КОЛІЇ З УРАХУВАННЯМ ЗМІНИ ЇЇ СТАНУ В ПРОЦЕСІ ЕКСПЛУАТАЦІЇ


7.1 Основні положення існуючої методики розрахунку безстикової колії


Можливість укладання безстикової колії та вибір її конструкції (темпратурно-напруженого типу або з сезонними розрядками температурних напружень) згідно з Технічними вказівками [1] встановлюється порівнянням допустимої температурної амплітуди [Т] для конкретних умов експлуатації з фактичною температурною амплітудою ТА, що спостерігається в конкретній місцевості.

Допустима температурна амплітуда залежить від ряду факторів, а саме: виду рухомого складу, швидкості руху поїзда, виду та потужності верхньої будови колії та плану лінії.

Вона складається із допустимого підвищення температури рейкових плітей по відношенню до температури закріплення [ΔtС], яке визначається із умов стійкості безстикової колії проти викиду, і допустимого зниження температури рейкових плітей [Δtp].

Критеріями для визначення розмірів допустимого зниження температури рейкових плітей, а отже і призначення безпечної верхньої межі інтервалу закріплення плітей є:

- міцність рейок при сумісній дії поїзних та температурних навантажень;

- величина розкриття зазору у випадку зламу пліті при низьких температурах;

- міцність стикових з'єднань у зрівняльних прольотах під дією температурних сил.

Все ж головним критерієм є міцність рейок, яку слід розглядати з різних позицій:

- неперевищення межі текучості в підошві рейки при одноразовому навантаженні;

- відповідності циклічного еквівалентного навантаження в підошві рейки межі витривалості;

- забезпечення міцності підошви рейки від втоми.

На вітчизняних залізницях [1] та на більшості зарубіжних залізниць розрахунок міцності рейкових плітей в безстиковій колії виконується з умови недопустимості пластичних деформацій підошви від сумісної дії найбільш можливих розтягуючих температурних напружень і максимальних напружень від дії рухомого складу. При цьому за розрахунковий приймається такий стан, при якому рейка зі зносом головки 6 мм має фізико-механічні характеристики металу як у нової рейки, а саме


, (7.1)


де:  – максимальні розтягуючі температурні напруження;

 – максимально-ймовірні розтягуючі напруження в кромках підошви рейки від згину та кручення її під навантаженням від коліс рухомого складу;

Км – коефіцієнт запасу міцності;

  допустиме напруження, що дорівнює мінімальній величині умовної межі текучості рейкової сталі.


7.2 Особливості розрахунків безстикової колії з урахуванням зниження службових властивостей рейок


В початковий період експлуатації показники роботи безстикової колії з новими рейками близькі до розрахункових. Але по мірі напрацювання тоннажу службові властивості рейок поступово погіршуються у зв'язку зі зміненням геометричного окреслення їх головок та корозією підошви, а також фізико-механічних характеристик металу.

Знос головки рейки, якщо він відбувається досить рівномірно, при рейках типів Р65 і Р75 несуттєво знижує момент опору. На прямих ділянках та пологих кривих після проходження міжремонтного тоннажу знос головки незагартованої рейки, як правило, не перевищує 3 – 4 мм, на об'ємно загартованих рейках він суттєво менший.

При коченні коліс через розрахунковий переріз рейки в головці під контактною площиною практично миттєво змінюється напружений стан рейкового металу. Якщо колесо знаходиться над розрахунковим перерізом, в головці рейки виникають досить високі напруження, що формуються в основному в результаті контактної дії колеса та згину рейки. Максимум цих дотичних напружень знаходиться здебільшого на глибині 4 – 7 мм від поверхні кочення. З підвищенням осьових навантажень вагонів максимуми цих напружень зміщуються до середини головки рейки.

Виникнення дефектів в головці рейки здебільшого починається в перерізах, де періодично виникають максимуми дотичних дій, і в цих місцях розташовані ланцюжки неметалевих включень. Зародженню тріщини втомленого характеру передають мікрозсуви і початкові тріщини, які поступово змінюються, переходять в основну або магістральну тріщину. Далі в цій зоні починає з'являтися і розвиватися тріщина втомленого характеру.

Зараз вже встановлено, що для незагартованих рейок Р65 при осьових навантаженнях вагонів 190 – 210 кН і швидкостях руху до 70 – 90 км/год вже після проходу 200 – 250 млн.т вантажу на всьому протязі головки починають з’являтися внутрішні мікротріщини. По мірі подальшої експлуатації вони розвиваються нерівномірно, і деякі з них, як правило, до моменту проходу 500 – 600 млн. т досягають біля 20% площі перерізу головки. В цей час вони виявляються типовими дефектоскопами і відмічаються як перерізи з гостродефектними пошкодженнями. Але до моменту суцільної заміни рейок, крім двох гостродефектних перерізів, протягом всієї зварної пліті може бути ще багато місць, де внутрішні пошкодження малі і не виявляються типовими дефектоскопами.

Крихкі наскрізні руйнування шийки під поїздами відбуваються в тих випадках, коли поперечні тріщини втомленого походження поступово збільшуючись, досягають такого критичного значення, при якому опір даного перерізу рейки динамічній дії коліс стає недостатнім. Сучасними методами розраховується міцність рейок, що характеризується останньою стадією розвитку втомленої тріщини при досягненні її критичного розміру, при якому відбувається крихке руйнування. Під час експлуатації рейок в металі при періодичності дій знакоперемінних навантажень відбуваються складні взаємозв'язані процеси на всьому протязі головки рейки, які супроводжуються загальним зниженням фізико-механічних характеристик рейки по мірі збільшення пропущеного тоннажу, в тому числі і її міцність.

Розвиток дефектів контактно-втомленого походження також суттєво знижує міцність рейок. Особливо небезпечні дефекти за 21-м малюнком, розвиток яких до розмірів 20% площі перерізу головки значно вичерпує стійкість, пластичність та енергоємність рейок (руйнуюче навантаження знижується на 25%). Розвиток тріщин знижує опір рейок крихкому руйнуванню в колії, особливо при роботі головки в зоні розтягуючих напружень при згині. У зв’язку з цим в розрахунки необхідно ввести додатковий критерій, який дозволив би встановлювати допустимі розтягуючі напруження в головці рейки при різних розмірах дефектів по мірі напрацювання тоннажу. І це не дивлячись на те, що прийняті в свій час мінімальні значення умовної межі текучості рейкової сталі  350 МПа і 400 МІІа відповідно для незагартованих і загартованих рейок, для сучасних рейок складають 470 МПа і 780 МПа.

В основі розрахунку безстикової колії на міцність за таким підходом лежить формула


, (7.2)


де:  – максимальні розтягуючі температурні напруження, МПа;

 – залишкові напруження металургійного походження в головці рейок;

Км – коефіцієнт запасу міцності;

 – максимально ймовірні нормальні розтягуючі напруження в головці рейки від коліс рухомого складу, МПа;

 – допустимі напруження для рейки з тріщиною, МПа.

Нормальні розтягуючі напруження в головці рейки від коліс рухомого складу, коли вона працює в зоні від'ємного прогину, в умовах рівнопружної основи колії можуть досягати до 25% стискуючих напружень, а при нерівнопружній основі колії та наявності нерівностей на рейці або колесі - до повної величини стискуючих напружень. Сполучення розтягуючих напружень від згину рейки з залишковими напруженнями того ж знаку при наявності в поверхневих шарах головки концентратів в вигляді тріщин суттєво знижують міцність рейок (табл. 7.1)


Таблиця 7.1 Залежність руйнуючого навантаження від напрацьованого тоннажу

Напрацьований тоннаж, млн.т. брутто

0

200

300

400

500

600

700

Зниження руйнуючого навантаження для рейок Р65,%

100

97

94

90

85

82

75


Виходячи із нерівностей (7.2), допустиме зниження температури рейкових плітей за умовою гарантії відсутності крихкого зламу рейки з дефектом, тобто коли ще не відбувається крихкий злам рейки з дефектом заданого розміру, визначається таким чином



, (7.3)


або


, (7.4)


де:  – зниження температури рейкових плітей, еквівалентне дії поїзного навантаження по відношенню до головки рейки.

Значення розтягуючих напружень в головці рейки типу Р65 в зоні оберненого прогину для колії з залізобетонними шпалами взимку можуть складати від 20 до 40 МПа від дії рухомого складу. Проте при проходженні колеса з повзуном, а також в місцях просідань колії до 40 мм в головці рейки можуть з'явитися розтягуючі напруження біля 160 – 200 МПа.

В нових рейках стандартного виробництва в поверхневих шарах, що межують з поверхнею кочення головки, мають місце розтягуючі залишкові напруження, які складають в середньому 80 МПа для нетермозміцнених рейок і 120 МПа – для термозміцнених. Максимальна величина таких напружень може доходити на глибині 4-5 мм до 200 МПа.

Під дією зовнішніх сил відбувається інтенсивне змінювання залишкових напружень. В нетермозміцнених рейках залишкові напруження на поверхні головки зменшуються більше, ніж вдвічі в початковий період експлуатації, в термозміцнених рейках залишкові напруження змінюються в процесі експлуатації протягом більш тривалою періоду. В зв’язку з певною невизначенністю, в розрахунках прийнято, що залишкові напруження в нетермозміцнених рейках в глибині головки складають 20 МПа, а в термозміцнених – 60 МПа.

Значення  приймається із умови недопущення при мінімальній температурі крихкого зламу рейки з дефектом, який ще не може бути виявленим дефектоскопними засобами. Зі зниженням температури знижується і критичний розмір тріщин, які приводять до крихкого руйнування рейки. Але в кожному конкретному випадку при одній і тій же температурі рейки ламаються від тріщин різного розміру і навпаки – рейки з однаковими тріщинами ламаються при різних температурах. Іншими словами, рейка з малою тріщиною може зламатися і при малих поїзних навантаженнях, якщо велика різниця між температурою закріплення пліті і температурою, при якій відбувся злам.

Спостереження та статистична обробка фактичного матеріалу по зламу рейок показала, що значення температурних розтягуючих напружень при зламі рейкових плітей не перевищує 80 – 100 МПа при величині площі поперечної тріщини в головці за 21-м малюнком від 20 до 90% перерізу головки для незміцнених рейок. Тому з позиції забезпечення безпеки руху допустимий рівень розтягуючих напружень в головці з дефектами контактно-втомленого походження необхідно пов'язувати з чутливістю дефектоскопних пристроїв та періодичності контролю рейок в колії. Зараз сучасними дсфектоскопними засобами може бути виявлений мінімальний розмір внутрішньої тріщини втомленого походження, який складає 12 мм.

Аналіз температурних умов роботи безстикової колії на залізницях України [1] показує, що мінімальні температури рейок tminmin знаходяться в межах від - 26°С до - 40°С (крім Севастополя - 22°С та Феодосії - 25°С). Тому для температурних умов залізниць України допустимі величини розтягуючих напружень в головці рейки типу Р65 складають [28]:


 = 390 МПа для термічнозміцнених;

 = 270 МПа для незміцнених.


З урахуванням залишкових напружень в головці рейки і прийнятого запасу міцності.Км = 1,3, згідно з (7.3), допустиме зниження температури рейки по відношенню до температури закріплення можна визначити за формулами

-                      для термозміцнених рейок


, (7.5)


-                      для незміцнених рейок


, (7.6)


Виходячи із величини реально можливих максимальних розтягуючих напружень в головці рейки значення допустимих знижень температур рейкових плітей за вказаними вище умовами будуть складати:

- для термозміцнених рейок від 111°С до 122°С;

- для незміцнених рейок від 79°С до 90°С.

Аналізуючи ці значення [Δtp] та порівнюючи їх зі значеннями, приведеними в технічних вказівках [1], видно, що різниця між ними (в першу чергу для термічно незміцнених рейок) практично не суттєва. Тому оцінка міцності рейкових плітей і температурні умови їх закріплення за існуючою методикою формально не протирічить реальним умовам роботи безстикової колії. А допустимі напруження у підошві [σ] = 350 МПа та [σ] = 400 МПа відповідно для незміцнених та термозміцнених рейок можуть розглядатися вже як допустимий рівень деякого узагальненого показника, що характеризує роботу плітей безстикової колії на витривалість в зоні підошви рейок.


Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.