Рефераты. Проект централізованого технічного обслуговування маршрутних транспортних засобів на базі філії "ТЕМП-АВТО" відкритого акціонерного товариства "РІВНЕ-АВТО"






Приймаючи послідовно значення , рівні 30, 35, 40, 45, 50, отримаємо  рівне 18, 21, 24, 27, 30. Але числа зубів  рівні 21 і 27 не забезпечують цілого числа зубів сателітів:


.


Таким чином, залишаються числа зубів сонячного колеса, рівні 18, 24, 30, 36, 42.

в) Числа зубів на інших колесах:

72 (96, 120, 144, 168);

27 (36, 45, 54, 63).

5. Визначення моментів.

а) Момент на ведучому валу:

.

б) Момент на веденому валу:

.

в) Момент на епіциклічному колесі:

, або

.

Далі потрібно визначити найбільш навантажений полюс, але для розглядуваної схеми, коли зусилля в полюсах рівні, зрозуміло, що при однакових матеріалах в гірших умовах знаходиться сонячне колесо, так як число зубів його менше, а число циклів навантажень більше. Хоча зуби сателітів в такій схемі планетарного механізму працюють на згин з знакоперемінними навантаженнями навіть при постійному напрямку обертання, так як в зачепленні з сонячним і епіциклічним колесами зуб працює різними сторонами, але реверс гайковерта згладжує цю особливість роботи сателітів.

6. Відносні числа обертів.

Сонячне колесо:

 об/хв.

Епіцикл:

 об/хв.

Сателіт:

 об/хв.

7. Визначення міжосьової відстані коліс.

Міжосьова відстань коліс планетарної передачі визначається з умови витривалості по контактним напругам при зупиненому водилі, тобто так само, як і для простої передачі.

Ця відстань може бути визначена в залежності від обертового зусилля, крутного моменту, або потужності.

Вихідною являється формула Герца-Бєляєва:


,


де  – зусилля, що припадає на одиницю довжини контакту;

 – приведений модуль першого роду;

 – приведений радіус кривизни в точці контакту.

Величини цих параметрів визначаються з умов:


,


де  – розрахункова обертова сила, момент і потужність;

 ([3] с. 134), так як обидва колеса виготовлені з сталі;


,


де  – радіуси шестерні і колеса;

 – кут зачеплення;

 – ширина колеса.

Підставляючи в вихідну формулу і розв’язуючи відносно міжосьової відстані , отримаємо:


,


де .

Будемо рахувати по моменту на сонячному колесі:


,



де  – відповідно коефіцієнти динамічності і концентрації навантаження;

 – коефіцієнт, який враховує нерівномірність розподілу навантаження між сателітами.

Приймаємо для фланкірованих зубів ([3] с. 135).

При симетричному розміщенні колеса відносно опор ([3] с. 135).

При плаваючих центральних колесах  ([3] с. 135).

Тоді отримаємо:

Допустима контактна напруга залежить в основному від поверхневої твердості матеріалу, його термічної обробки і потрібного терміну придатності передачі. Крім того, залежить від в'язкості мастила, степені точності виготовлення і чистоти поверхні:


.


Матеріал колеса – сталь 40Х з твердістю RC=45ч50. Колесо виготовлене по 7-й степені точності ГОСТ 1643–56 з чистотою робочої поверхні зуба по сьомому класу ГОСТ 2789–59.

 – коефіцієнт, який залежить від твердості поверхні зуба, матеріалу і його термічної обробки.

При RC=50  =190ч240 ([3] с. 136). Приймаємо  =240.

 – коефіцієнт, що враховує в'язкість мастила, визначається графічним методом. В нашому випадку кінетична в'язкість в cct при температурі мастила, що надходить в зачеплення, лежить в межах , то ([3] с. 136).

 – коефіцієнт, який залежить від завершальних операцій. При 10 класі чистоти  ([3] с. 136).

 – число циклів, що відповідає тривалій межі витривалості. Для сталі 40Х з твердістю RC=50  ([3] с. 136).

 – число циклів, що обчислюється за формулою:

.

При реверсивному редукторі з однаковою ймовірністю роботи в обидві сторони загальний час роботи ділиться на 2.

Так як , то приймаємо .

Тоді отримаємо:

.

Коефіцієнт ширини колеса ч ([3] с. 136) найбільш широко розповсюджений для планетарних передач. Приймаємо .

Міжосьова відстань буде рівна:


.


8. Діаметр сонячного колеса

Для планетарних передач міжосьова відстань не являється основним параметром, який визначає габарити редуктора. Тому діаметр розрахункового колеса можна визначати відразу.

З отриманої вище формули


,


і враховуючи що


 і ,


отримаємо:


 або .


Приймаючи ширину колеса , де  – коефіцієнт ширини колеса отримаємо:


.


В нашому випадку при


,


9. Модуль зачеплення.

При ,


,


або


.

При , , .

Приймаємо модуль зачеплення , при , .

Тоді  і

10. Перевірка зубів на згин.

Визначаємо напруження згину


.


Напруження стискання


.


Сумарне напруження


,


де  – обертова сила;

 – крок;

 – кут тиску при вершині зубів;

 – коефіцієнт форми зуба, визначається з виразу


  і .


Рівняння міцності


,


де  – розрахункова обертова сила;

 – коефіцієнт, що враховує вплив перекриття.

Напруження зуба рівне:


.


Замінюючи


,  і ,


отримаємо


.


Звідки



.


Наближено коефіцієнт форми зуба можна визначити по емпіричній формулі, яка має вигляд: .

Для внутрішнього зачеплення, виконаного з 7-ою ступінню точності, можна орієнтовно прийняти  ([3] с. 139).

Допустиме нормальне напруження від згину при реверсивній передачі обчислюється за формулою:


; ч,


і так як , то приймається , де  – межа витривалості зразка на згин при симетричному циклі навантаження;

 – ефективний коефіцієнт концентрації напружень біля основи зуба ч ([3] с. 139), в залежності від матеріалу, радіусів скруглень і їх обробки.

Проте в нашому випадку якість сталі 40Х покращена і твердість її становить RC=50, то при цьому допустиме контактне напруження не рахується, а воно рівне 9000ч10000.

Напруження згину, що сприймається зубом


.


Таким чином зуб має надлишкову міцність при згинанні .

Можна було б ще зменшити модуль зачеплення, але це приведе до дуже великої кількості зубів, а дуже малі розміри сателіта мішають компактному розміщенню підшипників.

Отже, остаточно приймаємо: , , ; ; ;

Для перевірки прийнятого значення коефіцієнта динамічності навантаження визначають обертову швидкість в полюсі зачеплення при відносному русі:


.


11. Особливості розрахунку осей сателітів.

Розрахункова схема осі сателіта залежить від жорсткості зв’язку її обох опор. В нашому випадку ці опори жорстко зв’язані між собою в суцільному водилі і вісь сателіта розраховується на згин як балка, що лежить на двох опорах.

Навантаження на вісь і опори, як це слідує з умови рівноваги сателіта, рівна .

Розрахункова обертова сила, прикладена до сателіта, в полюсах зачеплення без врахувань втрат на тертя


.


.

Внаслідок рівності обертових сил в полюсах зачеплення сателіта з сонячною шестернею і епіциклом будуть рівні і радіальні сили в цих полюсах, . Ці сили зрівноважаться на сателіті. Отже, сила, що згинає вісь сателіта і навантажує підшипники, .

Але при числах обертів, що наближаються до тисячі, необхідно вже враховувати відцентрову силу, що діє в радіальному напрямку і згинає вісь сателіта, а також навантажує підшипник. Ця сила рівна:


,


де  – вага деталей, відцентрова сила яких навантажує вісь сателіта і її опори (сателіт, підшипники, частина осі сателіта, яка не має опори, розпірні втулки);

 – так званий радіус водила, тобто відстань від центральної осі до осей сателітів;

 – кутова швидкість обертання водила в 1/с.

Для зменшення величини відцентрової сили потрібно намагатися зменшити вагу сателіта і деталей його опори, до зменшення кутової швидкості водила і його радіуса. В нашому випадку

.

Таким чином, на основі аналізу конструкцій різьбозгвинчуючого обладнання та існуючих методик його розрахунку ми провели розрахунок планетарної передачі гайковерта, який може бути використаний при виконанні операцій по ТО і ремонту на станціях технічного обслуговування.


3. Технологічна частина


3.1 Способи оцінки зміни технічного стану автомобілів та їх агрегатів


Визначення технічного стану автомобілів та агрегатів особливо необхідно, коли вузол або агрегат відмовив. По окремим практично встановленим ознакам можна знайти спряження або вузол, де порушена працездатність. Але це крайній випадок. Бажано момент настання відмови передбачати заздалегідь для того, щоб його виключити.

У практичних умовах вузол (агрегат) ремонтують, деталі заміняють на основі наявного досвіду експлуатації автомобілів у заданих умовах, пробіг до ремонту оцінюють по статистичним даним з великою погрішністю. Підвищення точності оцінки технічного стану агрегату дозволяє зменшити витрати на ремонт несправного агрегату за рахунок прогнозування пробігу автомобіля до настання граничної зміни технічного стану, якщо відомі гранична величина, закономірність зміни критерію в процесі експлуатації і стан вузла (агрегату) за попередній пробіг.

Причиною зміни технічного стану вузла є знос. Але, визначають безпосередньо по зносу тільки технічний стан шин, коробки передач, заднього моста, рульового керування – по зміні висоти протектора, по зазорах у зубчастих передачах, у шарнірах і інших спряженнях. Величину несправності вузлів, агрегатів оцінюють по зміні експлуатаційних показників: витраті масла, проривові газів у картер двигуна, шумам, температурі нагрівання й ін.

При обґрунтуванні оптимального режиму технічного обслуговування автомобіля перелік операцій визначають за коефіцієнтом повторюваності, періодичність установлюють поки що по статистичним даним пробігуу автомобіля до припустимого значення параметра вузла, агрегату. Оскільки пробіг до граничного стану вузла є випадковим, то розкид даних великий і тому для зниження витрат періодичність до технічного обслуговування приймають більше мінімальної, з урахуванням довірчого рівня імовірності. Але при цьому, як відомо, визначена частина автомобілів має потребу в технічному обслуговуванні раніш установленої періодичності, а більша частина – пізніше. Для скорочення витрат на технічне обслуговування і підвищення надійності необхідно проводити робити, коли параметр досягає припустимого значення. А це важливо тільки при своєчасному і точному визначенні технічного стану автомобіля без його розбирання. Технічний контроль, що у даний час в автотранспортних підприємствах роблять головним чином візуально, недостатньо ефективний, оцінка технічного стану залежить від кваліфікації контролера. Для об'єктивного контролю необхідні відповідні контрольні прилади. Інструментальне визначення технічного стану вузла, агрегату без розбирання називають діагностикою.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.