Рефераты. Паливо для карбюраторних двигунів. Підвищення октанового числа бензину






оцінка впливу сумішевого бензину на пускові властивості автомобілів при різному температурному стані двигунів та різних метеорологічних умовах (температурі, вологості, тиску атмосферного повітря);

оцінка впливу сумішевого бензину на безвідмовність роботи двигунів при різному температурному стані двигуна та різних метеорологічних умовах;

оцінка впливу сумішевого бензину на стабільність регулювань паливної апаратури двигунів при різному температурному стані двигунів та різних метеорологічних умовах;

оцінка впливу сумішевого бензину на вміст шкідливих речовин у картерних газах двигуна;

оцінка впливу сумішевого бензину на вміст шкідливих речовин у повітрі кабіни (пасажирського салону) автомобіля;

оцінка впливу довгострокового напрацювання двигуна на сумішевому бензині на технічний стан циліндро-поршневої групи;

оцінка впливу довгострокового напрацювання двигуна на сумішевому бензині на технічний стан паливної апаратури, в тому числі гумотехнічних виробів, що входять до її складу;

оцінка впливу довгострокового напрацювання двигуна на сумішевому бензині на стабільність регулювань паливної системи;

оцінка впливу довгострокового напрацювання двигуна на сумішевому бензині на фізико-хімічні властивості моторної оливи;

визначення особливостей експлуатації автомобілів на сумішевому бензині;

облік і аналіз відмов у роботі автомобілів під час підконтрольної експлуатації, які можуть бути пов'язані із застосуванням сумішевого бензину;

визначення фізико-хімічних властивостей (у тому числі антидетонаційних властивостей за моторним методом ГОСТ 511 і за дослідним методом ГОСТ 8226) всіх зразків сумішевого бензину та більшості зразків товарною бензину, з застосуванням яких виконуються експлуатаційні випробування автомобілів;

визначення відповідності фізико-хімічних властивостей зразків сумішевого та товарного бензину вимогам ТУ У 00149943.501-98 "Бензини автомобільні з підвищеним кінцем кипіння" та ГОСТ 2048-77 (тільки товарних бензинів). [4]


3. Теоретичні передумови


3.1 Загальні умови


Гідродинамічні випромінювачі - пристрої, перетворюючи частину енергії руху рідини в енергію акустичних хвиль. Робота гідродинамічного випромінювача обумовлена на генеруванні збурення в рідинному середовищі у вигляді деякого поля швидкості і тиску при взаємодії русі рідини з нерухомим або рухомим перешкод відповідної форми і розмірів. Найбільш близько для розв’язання поставленої задачі підходить теорія Лейтхилла. [7] Ця теорія була узагальнена для розгляду ефектів твердих меж, як спокійних так і рухомих довільним шляхом, конвективного підсилення і рідинного екранування у турбулентному потоці, таких, як не однократності температури, бульбашки в рідинах і частинки пилу в газах. Обумовлення цих і багато інших аспектів можна знайти за формулами (3.1, 3.2, 3.3; 3.4, 3.5). Для того, щоб передбачити звукові поля, випромінювані не стаціонарною течією на великій відстані від області течії, потрібно вирішувати неоднорідні рівняння.

Формула Лейтхилла:


q =  (3.1)


де ас - швидкість розповсюдження звуку, м/с

h - змінна, яка в подальшому полі може бути відображена у тиску, Па;

 - швидкість розповсюдження рідини, м/с.

Існує багато способів вибору акустичних аналогів. Наприклад, запропонованих Пауеллом - формула (3.6), Хау - формула (3.7) і Рібнером -

формула (3.8) і мають відповідний вигляд:

q = , (3.2)

q =, (3.3)

q = , (3.4)

Tij = ρuiuj + pij - ρσij (3.5)


де Tij - тендор квадрапольних напруг у швидкості , напругах pij і щільності ρ, кг/м3.


L = ωΛu - Tgrads, (3.6)

де ω - завихрення, с-1

Т - температура, t0C

S - ентропія пневмозвукового тиску, Дж.

Р (0) Рібнера задовольняє рівняння:


, (3.7)


Рівняння (3.2), (3.3), (3.4) представляють відповідні розподілення джерел у вигляді квадруполів, диполів і монополій. Крапковий мультиполь (або мультиполь із джерела, окремих масштабів l, менше випромінюючої хвилі λ) мають ефективність випромінювання і діаграму направленості, ідеального від індивідуальних простих джерел, із яких він складається і тоді ці підходи можуть бути домовлені і тільки тоді коли інтегральний ефект цього розподілення вирахуваний з використанням функції Гріна.

Робота вихрових випромінювачів засновано на виникненні автоколивань в струї при її взаємодії з перешкодами у вигляді основного клина або резонуючої порожнини. Струя, витікаючи з великою швидкістю із конусно-циліндричного або щілинного сопла, потрапляє на пластину з клиновидним кінцем, вчасна частота яких обчислюється по формулі (3.8).


f = , (3.8)


де L - коефіцієнт пропорційності, який залежить від способу закріплення пластини;

l - її довжина, м;

t - товщина, м;

E - модуль пружності, Па;

ρ - пружність матеріалу.

Спектр чередуючих коливань може знаходитися в інтервалі 0,4…40 кГц. А звуковий тиск у ближчій зоні може досягати 2…4,5 МПа при швидкості струї 20…25 м/с. частоту головної гармонії генеруючих коливань можна оцінити за допомогою формули:


, (3.9)


де х - об’єм в середині струї, м3;

Р0 - абсолютне значення тиску в середовищі, Па;

∆0 - товщина струї на виході із сопла, м;

Ρ - щільність рідини, кг/м3;

U0 - середня швидкість струменю у торця сопла, м/с;

r - радіус сопла, м;

l - відстань від сопла до перешкоди, м:

К =  (3.10)


де γ - кут розширення струменю, град.


3.2 Розробка технології отримання сумішного бензину


В сопло під тиском 0,6….1,0 МПа надходить компонент грубої емульсії. В наслідку перетискання струї за вихідною кромкою сопла встановлюється вакуум, який дорівнює тиску насищення одного із компонентів змішування при даній температурі. Потік середовища закипає і створює гідродисперсну емульсію 5….10 мкм.

Отримана груба емульсія направляється у форкамеру, де формується у стійку вузьконаправлену струю, яка займає весь переріз форкамери.

При витіканні цієї струї в камеру змішування, в наслідок збільшення площі поперечного перерізу каналу, потік емульсії відривається від стінок і утворюється вільне витікання з вільною зовнішньою межею. Між стіною канала і межею струменя утворюється складний інтенсивний вихровий рух рідини. У вихровій зоні відбуваються високоякісні продольні імпульси тиску від 0 до 10 тис. атмосфер, які роздрібнюють частинки емульсії. [3]

Середня інтегральна величина тиску дорівнює тиску насиченого легко випарюючого компонента, за рахунок цього в зоні відриву струї утворюється газова фаза в результаті безперервного обліку по всій камері змішування утворюється гомогенний двофазний газорідинний потік.

При наступному русі потоку по камері змішування, швидкість його зменшується і тиск підвищується, при досягненні величини тиску, більшої чим тиск насичення при даній температурі суміші, яка знаходиться у дворазному стані, утворюється лавиностворююча конденсація газів. При цьому утворюється спектр коливань різної фізичної природи, в тому числі і ультразвукових, сприяючих розриву нових газових пузирків, які в свою чергу вибухають і народжують нові коливання, тобто спостерігається лавиноутворюючий процес вибуху газових бульбашок, що викликає міцне ультразвукове поле, стрибок конденсації супроводжується стрибком тиску і щільності.

При цій обробці емульсії на виході апарату являє однорідну монодисперсну з розміром частин 0,1…0,4 мкм.

Підвищення або зниження тиску за апаратом не буде відмічатися на продуктивності апарату. Це пояснюється надзвуковим режимом витікання емульсії, так як максимальна швидкість переміщень малих збурень у середовищі неможливо бути швидкості звуку у ній і переміщуватися у верх по потоку.

Гідродинамічне випромінювання перетворює частину енергії турбулентної затопленої струї рідини в енергію акустичних хвиль. Робота гідродинамічного випромінювача обумовлена на генеруванні збуджень в рідкому середовищі у вигляді деякого поля швидкостей і типів при взаємодії витікаючої з сопла струї з перешкодою відповідної форми і розмірів, або при примусовому перемінному витіканні струї. Ці збудження утворюють зворотну дію на основу струї у сопла, за рахунок встановлення автоколивального режиму. Механізм випромінювання звуку збудженнями може бути різним залежно від конструкції гідродинамічного випромінювача, яка принципово відрізняється від конструкції газоструйних випромінювачів для повітряного середовища, хоча гідродинамічні випромінювачі називають рідинними свистками. [7]

Гідродинамічний випромінювач за рахунок пульсації кавітаційної області, який створився між соплом і перешкодою. Основні елементи такого випромінювача являється конусно-циліндричне сопло і перешкода - відбивач і резонансна коливна система у вигляді стержнів або у вигляді циліндра із профрезерованими вздовж пазами. Кращими в енергетичному відношенні являються вгнуті відбивачі у вигляді лунки, яка забезпечує утворення кавітаційної області, вміст якої з відповідною частотою виштовхується із зони сопло-відбивач. Для збудження інтенсивних коливань необхідно відповідне співвідношення між діаметром лунки відбивача і діаметром сопла.

Пульсування кавітаційної області створюють змінні поля швидкостей та тиску, які збуджують в стержнях згинаючи коливання на їх власній частоті, що робить внесок у випромінювання, збільшує його інтенсивність. [7]

Диспергування ультразвукове тонке роздрібнення твердих речовин або рідин, тобто перехід речовини в дисперсний стан з утворенням поля під впливом ультразвукових коливань. [3] Диспергуванням називають роздрібнення твердих тіл в рідинному середовищі. Диспергування рідини в газах (повітрі) називають розпиленням, а диспергірування рідини в рідині емульсією. Ультразвукове диспергірування дозволяє отримати високодисперсну (середній розмір частинок мкм і частина мкм), однорідна і хімічно чиста суспензія.

Для утворення ультразвукового диспергірування необхідна кавітація. Роздрібнення речовини відбувається під дією ударних хвиль, виникаючих при захлопуванні кавітаційних полостів. Диспергірування починається при інтенсивності ультразвуку, перемішуючий деяке порогове значення. Величина якого складає декілька Вт/см2 і залежить від кавітаційної міцності рідини, а також від характеру і величини сили взаємодії між окремими частинами.

Кавітація яка утворюється в кавітаторі супроводжується утворенням в рідині пульсуючих бульбашок заповнених паром, газом або їх сумішшю [7]. Розрізняють акустичну кавітацію і гідродинамічну, у нашому випадку гідродинамічна, яка обумовлена сильним локальним пониженням тиску в рідині в наслідок великих швидкостей течії. Для ідеально чистої рідини імовірність спонтанного утворення бульбашок стає помітною лише при достатньо великих розтягуючи навантаженнях для води теоретична величина 1,5-108 Па.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.