Рефераты. Группы мышц у животных






p> Эти движения основаны на обратимом изменении конформации концевых частей молекул миозина (поперечных выступов с головками), при котором связк между толстым филаментом миозина и тонким филаментом актина образуются, исчезают и возникают вновь.

До раздражения или в фазе расслабления мономер актина недоступен для взаимодействия, так как этому мешает комплекс тропонина и определен- ная конформация (подтягивание к оси филамента) концевых фрагментов молекулы миозина.

В основе молекулярного механизма сокращения лежит процесс так называемого электромеханического сопряжения, причем ключевую роль в процессе взаимодействия миозиновых и актиновых миофиламентов играют ионы Са++, содержащиеся в саркоплазматическом ретикулуме. Это подтвер- ждается тем, что в эксперименте при инъекции кальция внутрь волокон возникает их сокращение.

Возникший потенциал распространяется не только по поверхностной мембране мышечного волокна, но и по мембранам, выстилаюшим попе- речные трубочки (Т-систему волокна). Волна деполяризации захватывает расположенные рядом мембраны цистерн саркоплазматического ретикулума, что сопровождается активацией кальциевых каналов в мембране и выходом ионов Са++ в межфибриллярное пространство.

Влияние ионов Са+ + на взаимодействие актина и миозина опосред- ствовано тропомиозином и тропониновым комплексом которые локализованы в тонких нитях и составляют до 1/3 их массы. При связывании ионов Са++ с тропонином (сферические молекулы которого «сидят» на цепях актина) последний деформируется, толкая тропомиозин в желобки между двумя цепями актина. При этом становится возможным взаимодействие актина с головками миозина, и возникает сила сокращения. Одновременцо нроисхо- дит гидролиз АТФ.

Поскольку однократный поворот «головок» укорачивает саркомер лишь на 1/100 его длины (а при изотоническом сокращении саркомер мышцы может укорачиваться на 50 % длины за десятые доли секунды), ясно, что поперечные мостики должны совершать примерно 50 «гребковых» дви- жений за тот же промежуток времени. Совокупное укорочение последо- вательно расположенных саркомеров миофибрилл приводит к заметному сокращению мышцы.

При одиночном сокращении процесс укорочения вскоре закэнчивается.
Кальциевый насос, приводимый в действие энергией АТФ, снижает концент-

-8 рацию Са++ в цитоплазме мышц до 10 М и повышает ее в сарколлазма-

-3 тическом ретикулуме до 10 М, где Са++ связывается белком кальсек- вестрином.

Снижение уровня Са++ в саркоплазме подавляет АТФ-азную актив- ность актомиозина; при этом поперечные мостики миозина отсоединяются от актина. Происходит расслабление, удлинение мышцы, которое является пассивным процессом.

Б случае, если стимулы поступают с высокой частотой {20 Гц и более), уровень Са++ в саркоплазме в период между стймулами остается высоким, так как кальциевый насос не успевает «загнать» все ионы Са++ в систему саркоплазматического ретикулума. Это является причиной устойчивого тетанического сокращения мышц.

Таким образом, сокрашение и расслабление мышцы представляет собой серию процессов, развертывающихся в следующей последовательности: стимул -> возникновение потенциала действия - >электромеханическое со- пряжение (проведение возбуждения по Т-трубкам, высвобождение Са++ и воздействие его на систему тропонин - тропомиозин - актин) - > образова- ние поперечных мостиков и «скольжение» актиновых нитей вдоль миози- новых - > сокращение миофибрилл - > снижение концентрации ионов
Са++ вследствие работы кальциевого насоса - > пространственное изменение белков сократительной системы - > расслабление миофибрилл.

После смерти мышды остаются напряженными, наступает так назы- ваемое трупное окоченение. При этом поперечные связи между филаментами актина и миозина сохраняются и не могут разорваться по причине снижения уровня АТФ и невозможности активного транспорта Са++ в саркоплазма- тический ретикулум.

СТРУКТУРА И ФУНКЦИИ НЕЙРОНА

Материалом для построения ЦНС и ее проводни- ков является нервная ткань, состоящая из двух компонентов - нервных клеток (нейронов) и нейроглии. Основными функциональными элементами
ЦНС являются нейроны: в теле животных их содержится примерно 50 млрд, из которых лишь небольшая часть расположена на периферических участках тела.

Нейроны составляют 10 - 15 % общего числа клеточных элементов в нервной системе. Основную же часть ее занимают клетки нейроглии.

У высших животных в процессе постнатального онтогенеза дифферен- цированные нейроны не делятся. Нейроны существенно различаются по форме (пирамидные, круглые, звездчатые, овальные), размерами (от 5 до
150 мкм), количеству отростков, однако они имеют и общие свойства.

Любая нервная клетка состоит из тела (сомы, перикариона) и отростков разного типа - дендритов (от лат. дендрон - дерево) и аксона (от лат. аксон - ось). В зависимости от числа отростков различают униполярные
(одноотростковые), биполярные (двухотростковые) и мультиполярные
(многоотростковые) нейроны. Для ЦНС позвоночных типичны биполярные и особенно мультиполярные нейроны.

Дендритов может быть много, иногда они сильно ветвятся, различной толщины и снабжены выступами - «шипиками», которые сильно увеличи- вают их поверхность.

Аксон (нейрит) всегда один. Он начинается от сомы аксонным холмиком, покрыт специальной глиальной оболочкой, образует ряд аксональных окои- чаний - терминалий. Длина аксона может достигать более метра. Аксонный холмик и часть аксона, не покрытая миелиновой оболочкой, составляют начальный сегмент аксона; его диаметр невелик,(1 - 5 мкм).

В ганглиях спинно- и черепномозговых нервов распространены так называемые псевдоуниполярные клетки; их дендрит и аксон отходят от клетки в виде одного отростка, который затем Т-образно делится.

Отличительными особенностями нервных клеток являются крупное ядро (до 1/3 площади цитоплазмы), многочисленные митохондрии, сильно развитый сетчатый аппарат, наличие характерных органоидов - тигроидной субстанции и нейрофибрилл. Тигроидная субстанция имеет вид базофильных глыбок и представляет собой гранулярную цитоплазматическую сеть с мно- жеством рибосом. Функция тигроида связана с синтезом клеточных белков.
При длительном раздражении клетки или перерезке аксонов это вещество исчезает. Нейрофибриллы - это нитчатые, четко выраженные структуры, находящиеся в теле, дендритах и аксоне нейрона. Образованы еще более тонкими элементами - нейрофиламентами при их агрегации с нейротрубочками.
Выполняют, по-видимому, опорную функцию.
В цитоплазме аксона отсутствуют рибосомы, однако имеются митохондрии, эндоплазматический ретикулум и хорошо развитый аппарат нейрофиламентов и нейротрубочек. Установлено, что аксоны представляют собой очень сложные транспортные системы, причем за отдельные виды транспорта (белков, метаболитов, медиаторов) отвечают, по-видимому, разные субклеточные структуры .
В некоторых отделах мозга имеются нейроны, которые вырабатывают гранулы секрета мукопротеидной или гликопротеидной природы. Они обладают одновременно физиологическими признаками нейронов и железистых клеток. Эти клетки называются нейросекреторными.

Функция нейронов заключается в восприятии сигналов от рецепторов или других нервных клеток, хранении и переработке информации и пере- даче нервных импульсов к другим клеткам - нервным, мышечным или секреторным.
Соответственно имеет место специализация нейронов. Их подразделяют на
3 группы: чувствительные (сенсорные, афферентные) нейроны, воспринимающие сигналы из внешней или внутренней среды; ассоциативные (промежуточные,вставочные) нейроны,связывающие разные нервные клетки друг с другом; двигательные (эффекторные) нейроны, передающие нисходящие влияния от вышерасположенных отделов ЦНС к нижерасположенным или из ЦНС к рабочим органам.

Тела сенсорных нейронов располагаются вне ЦНС:в спинномозговых ганглиях и соответствующих им ганглиях головного мозга. Эти нейроны имеют псевдоуниполярную форму с аксоном и аксоноподобным дендритом.

К афферентным нейронам относятся также клетки, аксоны которых составляют восходящие пути спинного и головного мозга.

Ассоциативные нейроны - наиболее многочисленная группа нейронов.
Они имеют более мелкий размер, звездчатую форму и аксоны с многочис- ленными разветвлениями; расположены в сером веществе мозга. Осуществ- ляют связь между разными нейронами, например чувствительным и двига- тельным в пределах одного сегмента мозга или между соседними сегментами; их отростки не выходят за пределы ЦНС .

Двигательные нейроны также расположены в ЦНС. Их аксоны участ- вуют в передаче нисходящих влияний от вышерасположенных участков мозга к нижерасположенным или из ЦНС к рабочим органам (например, мотонейронЫ в передних рогах спинного мозга) . Имеются эффектор- ные нейроны и в вегетативной нервной системе. Особенностями этих ней- ронов являются разветвленная сеть дендритов и один длинный аксон.
Воспринимающей частью нейрона служат в основном ветвящиеся дендриты, снабженные рецепторной мембраной. В результате суммации местных процессов возбуждения в наиболее легковозбудимой триегерной зоне аксона возникают нервные импульсы (потенциалы действия), которые распространяются по аксону к концевым нервным окончаниям. Таким обра- зом, возбумсдение проходит по нейрону в одном направлении - от дендритов к соме и аксону.

Нейроглия. Основную массу нервной ткани составляют глиальные элементы, выполняющие вспомогательные функции и заполняющие почти все пространство между нейронами. Анатомически среди них различают клетки нейроглии в мозге (олигодендроциты и астроциты) и шванновские клетки в периферической нервной системе. Олигодендроциты и шванновские клетки формируют вокруг аксонов миэлиновые обалочки.

Между глиальными клетками и нейронами имеются щели шириной
15 - 20 нм, которые сообщаются друг с другом, образуя интерстициальное пространство, заполненное жидкостью . Через это пространство происходит обмен веществ между нейроном и глиальными клетками, а также снабжение нейронов кислородом и питательными веществами путем диффузии. Глиальные клетки, по-видимому, выполняют лишь опорные и защитные функции в ЦНС, а не являются, как предполагалось, источни- ком их питания или хранителями информации.

По свойствам мембраны глиальные клетки отличаются от нейронов: они пассивно реагируют на электрический ток, их мембраны не генери- руют распространяющегося импульса. Между клетками нейроглии су- ществуют плотные контакты (участки низкого сопротивления), кото- рые обеспечивают прямую электрическую связь. Мембранный потен- циал глиальных клетов выше, чем у нейронов, и зависит главным образом от концентрации ионов К+ в среде.
Когда при активной деятельности нейронов во внеклеточном простран- стве увеличивается концентрация
К+, часть его поглощается деполяризованными глиальными элементами.
Эта буферная функция глии обеспечивает относительно постоянную вне- клеточную концентрацию К+.

Клетки глии - астроциты - расположены между телами нейронов и стенкой капилляров, их отростки контактируют со стенкой последних.
Эти периваскулярные отростки являются элементами гематоэнцефаличе- ского барьера.

Клетки микроглии выполняют фагоцитарную функцию, число их резко возрастает при повреждении ткани мозга.


Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.