Рефераты. Разработка автомобильного стробоскопа







4.2 Описание микроконтроллера Atmega16


В работе используется 8 – разрядный микроконтроллер семейства AVR Atmega16 (рисунок 4.1). Микроконтроллер изготовлен по КМОП – технологии, которая в сочетании с RICS архитектурой позволяет достичь наилучшего соотношения показателей быстродействие/энергопотребление

Atmega16 включает в себя:

Высокопроизводительный, маломощный 8-разрядный AVR-микроконтроллер;

– 131 мощных инструкций, большинство из которых выполняются за один машинный цикл;

– 32× 8-разрядных регистров общего назначения и регистры управления встроенной периферией;

– полностью статическая работа;

– производительность до 16 миллионов операций в секунду при тактовой частоте 16 МГц;

– встроенное умножающее устройство выполняет умножение за 2 машинных цикла;

– шестнадцат кбайт внутрисистемно перепрограммируемой флэш-памяти;

– память данных (ОЗУ) 512 байт;

– память данных (EEPROM) 512 байт;

– программируемая защита кода программы;

– два 8-разрядных таймера-счетчика с раздельными предделителями и режимами сравнения;

– один расширенный 16-разразрядный таймер-счетчик с отдельным предделителям, режимом сравнения и режимом захвата;

– счетчик реального времени с отдельным генератором;

– два 8-разразрядных канала широтно-импульсной модуляции (ШИМ);

– модулятор выходов сравнения;

– 8 мультиплексированных каналов 10-разрядного аналогово-цифрового преобразования;

– двухпроводной последовательный интерфейс, ориентированный не передачу данных в байтном формате;

– последовательный интерфейс SPI с поддержкой режимов ведущий/подчиненный;

– программируемый сторожевой таймер со встроенным генератором;

– встроенный аналоговый компаратор;

– сброс при подаче питания и программируемая схема сброса при снижении напряжения питания;

– встроенный калиброванный RC-генератор;

– внешние и внутренние источники прерываний;

– программный выбор тактовой частоты;

– общее выключение подтягивающих резисторов на всех линиях портов ввода-вывода.

– напряжение питания 4.5 – 5.5 В;

– потребляемый ток при частоте 8Мгц, при температуре 25 ос и напряжении питания 5В равен 13 мА.


Рисунок 4.1 – Микроконтроллер Atmega16


4.3 Описание стабилизатора напряжения КР1158ЕН501А


Серия интегральных стабилизаторов фиксированного положительного напряжения КР1158ЕНхх, КФ1158ЕНхх с малым падением напряжения вход - выход охватывает диапазон выходных напряжений от 3 до 15В. Все стабилизаторы предназначены для широкой области применения и идеально подходят для нужд автомобильной электроники, так как имеют встроенную защиту от выбросов входного напряжения при сбросе нагрузки генератора до 60 В, защиту при подключении входного напряжения в обратной полярности и от перегрева ИС. Для ограничения рассеиваемой мощности введена блокировка выходного напряжения при входном напряжении более 30 В. Стабилизаторы не выходят из строя при кратковременном подключении выводов в зеркальной последовательности

При превышении режима по одному из параметров происходит срабатывание схем внутренней защиты микросхемы - стабилизатор выключается.


Таблица 4.2 – Параметры стабилизатора напряжения

Типономинал

Uo (В)

Iо(А) рабочий не более

Io max(A) предельный не более

Тип корпуса

КР1158ЕН501А

5

0.15

0.7

ТО-251


4.4 Описание микросхемы UC3843


Интегральная схема (ИС) UC3843 выпускается в корпусах SOIC-8 и SOIC-14, но в подавляющем большинстве случаев встречается ее модификация в корпусе DIP-8. На рисунке 4.3 представлена цоколевка.

Микросхема UC3843 предназначена для построения на ее основе стабилизированных импульсных источников питания (ИП) с широтно-импульсной модуляцией (ШИМ). Поскольку мощность выходного каскада ИС сравнительно невелика, а амплитуда выходного сигнала может достигать напряжения питания микросхемы, то в качестве ключа совместно с этой ИС применяется n-канальный МОП транзистор.


Рисунок 4.3 – Цоколевка микросхемы UC3842


Рассмотрим подробнее назначение выводов ИС для наиболее часто встречающегося восьмивыводного корпуса [7].

Comp (1) – этот вывод подключен к выходу усилителя ошибки компенсации. Для нормальной работы ИС необходимо скомпенсировать АЧХ усилителя ошибки, с этой целью к указанному выводу обычно подключается конденсатор емкостью около 100 пФ, второй вывод которого соединен с выводом 2 ИС.

Vfb (2) – вход обратной связи. Напряжение на этом выводе сравнивается с образцовым, формируемым внутри ИС. Результат сравнения модулирует скважность выходных импульсов, стабилизируя, таким образом, выходное напряжение ИП.

C/S (3) – сигнал ограничения тока. Данный вывод должен быть присоединен к резистору в цепи истока ключевого транзистора (КТ). При повышении тока через КТ (например, в случае перегрузки ИП) напряжение на этом резисторе увеличивается и, после достижения порогового значения, прекращает работу ИС и переводит КТ в закрытое состояние.

 Rt/Ct (4) – вывод, предназначенный для подключения времязадающей RC-цепочки. Рабочая частота внутреннего генератора устанавливается подсоединением резистора R к опорному напряжению Vref и конденсатора С к общему выводу. Эта частота может быть изменена в достаточно широких пределах, сверху она ограничивается быстродействием КТ, а снизу - мощностью импульсного трансформатора, которая падает с уменьшением частоты. Практически частота выбирается в диапазоне 35…85 кГц. Следует заметить, что в качестве времязадающего должен применяться конденсатор с возможно большим сопротивлением постоянному току.

Gnd (5) – общий вывод.

Out (6) – выход ИС, подключается к затвору КТ через резистор.

Vcc (7) – вход питания ИС. Рассматриваемая ИС имеет некоторые весьма существенные особенности, связанные с питанием.

Vref (8) – выход внутреннего источника опорного напряжения, его выходной ток до 50 мА, напряжение 5 В.

Источник образцового напряжения используется для подключения к нему одного из плеч резистивного делителя, предназначенного для оперативной регулировки выходного напряжения ИП, а также для подключения времязадающего резистора.

ИС имеет некоторые особенности, связанные с ее питанием. Рассмотрим их подробнее. В первый момент после включения ИП в сеть внутренний генератор ИС еще не работает, и в этом режиме она потребляет от цепей питания очень маленький ток. Для питания ИС, находящейся в этом режиме, достаточно напряжения, получаемого с резистора R2 и накопленного на конденсаторе C5. Когда напряжение на этих конденсаторе достигает значения 7.8…9 В, запускается генератор ИС, и она начинает формировать на выходе импульсы управления КТ. На вторичных обмотках трансформатора ТV1, в том числе и на обмотке 3-4, появляется напряжение. Это напряжение выпрямляется импульсным диодом VD4, фильтруется конденсатором C4, и через диод VD5 подается в цепь питания ИС. В цепь питания включается стабилитрон VD6, ограничивающий напряжение на уровне 14…16 В. После того, как ИС вошла в рабочий режим, она начинает отслеживать изменения своего питающего напряжения, которое через делитель R5, R8 подается на вход обратной связи Vfb. Стабилизируя собственное напряжение питания, ИС фактически стабилизирует и все остальные напряжения, снимаемые со вторичных обмоток импульсного трансформатора.

При замыканиях в цепях вторичных обмоток, например, в результате пробоя электролитических конденсаторов или диодов, резко возрастают потери энергии в импульсном трансформаторе. В результате напряжения, получаемого с обмотки 3-4, недостаточно для поддержания нормальной работы ИС. Внутренний генератор отключается, на выходе ИС появляется напряжение низкого уровня, переводящее КТ в закрытое состояние, и микросхема оказывается вновь в режиме низкого потребления энергии. Через некоторое время ее напряжение питания возрастает до уровня, достаточного для запуска внутреннего генератора, и процесс повторяется.


5. РАСЧЕТНАЯ ЧАСТЬ


Произведем расчет делителя напряжения по каналу измерения напряжения аккумуляторной батареи

Примем R17 = 1 кОм, Uвхmax = 40 В, Uвыхmax = 5В. Тогда , Ом определим по формуле (5.1)


 Ом (5.1)


где

Для нахождения параметров время задающей цепи (R4C6) примем:

f = 60 кГц (частота преобразований), R4 = 20 кОм. Тогда С6, в нФ выразим из формулы:


  (5.2)

нФ


Произведем расчет выходной мощности , Вт преобразователя собранного на микросхеме UC3843.


(5.3)


где fр – частота импульсов идущих на лампу вспышку, Гц.


 Вт


Определим коэффициент трансформации повышающего трансформатора преобразователя по формуле 5.3


, (5.3)


где В, рабочее напряжение транзистора;

 В - выходное напряжение преобразователя;

 В - напряжение питания;

- коэффициент запаса;

- коэффициент трансформации;

Выразим К12 из формулы 5.3



Приведем емкость высоковольтного конденсатора к первичной цепи


 мкФ (5.4)


Рисунок 5.1 – Фаза заряда дросселя

 (5.5)

 (5.6)


Рисунок 5.2 - Режим прерывистых токов дросселя


 (5.7)

 (5.8)

 (5.9)

  (5.10)

(5.11)

(5.12)


Найдем индуктивность дросселя L, в Гн приравняв (5.12) к (5.3), получим


, где  (5.13)


= 60000 Гц, частота работы преобразователя.

С учетом КПД


 (5.14)


Примем = 0.25 А, = 0.8. Подставим эти значения в формулу 5.14 найдем индуктивность дросселя.



В

 мкГн


Выбираем магнитопровод К12×5×5.5 из феррита 4000НМ с параметрами


So =20 мм2, S = 18.1 мм2, lср=23.6 мм


Число витков в первичной обмотки [13] определим по формуле 5.15


 , (5.15)

где - коэффициент индуктивности, Гн.

Вычислим величину немагнитного зазора δ, в мм [14] по формуле 5.16

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.