Рефераты. Конструктивное усовершенствование гидравлической системы самолета Ту-154 на основе анализа эксплуатации






Потери давления во всасывающей магистрали складываются из потерь давления в:

§  шланге и трубопроводах;

§  закруглениях трубопроводов;

§  холодильнике;

§  самозапирающейся муфте;

§  расходомере-вискозиметре;

§  тройниках;

§  фильтрующем устройстве;

§  присоединительной арматуре.

Для расчета потерь в трубопроводах установки необходимо помимо длины знать их диаметр и характер течения жидкости. Расход жидкости через сечение трубопровода:


Q=(p d /4)* Ивх


Где: d - диаметр трубопровода


 (**)


За расчетную величину расхода жидкости Q примем его максимальное значение Q=110 л/мин, или в системе СИ: Q=0,0018 м3/с

Для определения характера течения жидкости в трубопроводе воспользуемся критерием Рейнольдса. Число Рейнольдса

Re=И d/n


Где: v = 3,04°Е при температуре t=20°C - кипнематическая вязкость жидкости АМГ-10;

3,04 градуса Энглера соответствуют 21,2 сст или 0,212 см2/с.

Выражая входные величины формулы в сантиметрах и секундах, получим:

Re = 300*31,2/0,212 = 44151

Поскольку полученное число Re больше критического значения 2300, то можно заключить, что поток в трубопроводах и шлангах установки будет носить турбулентный характер.

Значение числа Re попадает в интервал от 2300 до 80000, следовательно потери на трение в трубопроводах зависят от числа Re.

По формуле Блазиуса коэффициент сопротивления при турбулентном течении:

λ = 0,3164*

λ = 0,3164*44151-0,25 = 0,0218

Потери давления на трение в шланге и трубопроводах определяются из выражения


DРтр= l g(L/d)*(И/2g)


Где: L - суммарная длина коммуникаций во всасывающей линии. Примем L=8,8 м (складывается из 5 м длины шланга, соединяющего самолет с установкой и 3,3 м трубопроводов внутри установки и самолета).

DР=0,0218*8173,2(8,8/0,0312)*(9*2*9,8) = 23076 (Па)

Потери на преодоление местных сопротивлений:


DР = x*(И g /2g)

Где: ξ - коэффициент местного сопротивления, зависящий от вида последнего. Значение ξ определяется из справочной литературы.

Потери на закруглениях трубопровода на 90° при относительном радиусе изгиба r/d=2, ξ =0,15, количество закруглений во всасывающей магистрали - 5 шт.

DР = 5-0,15*(3 *8173,2)/(2*9,8) = 2814,8 (Па)

Потери давления в холодильнике, ξ = 3,5:

DР = 3,5*(3 *8173,2)/(2*9,8) = 13135,5 (Па)

Потери давления в самозапирающейся муфте, ξ =1,2:

DР = 1,2*(3 *8173,2)/(2*9,8) = 4503,6 (Па)

Потери давления в расходомере-вискозиметре, ξ =0,4:

DР = 0,4*(3 *8173,2)/(2*9,8) = 1501,2 (Па)

Потери давления в тройниках (2 штуки), ξ =0,25:

DР = 0,5*(3 *8173,2)/(2*9,8) = 1876,5 (Па)

Максимальные потери давления в фильтрующем устройстве составляют 4 кг/см2 или 392000 Па - при указанном перепаде открывается клапан перепуска. Таким образом ΔРф = 392000 Па.

Потери давления в присоединительной арматуре, ξ = 0,1:


DР= 10*0,1*(3 *8173,2)/(2*9,8) = 3753 (Па)


Таким образом, суммарные потери давления во всасывающей магистрали составляются из:


åР =


И равны:

åРп = 2814,8+13135,5+23076+4503,6+1501,2+

+1876,5+392000+3753 = 44660,4 (Па)

Введем обозначение:

А = Р + hg - åP - (И2вхg /2g)

А = 225400+2,5*8173,2-442660,4-(32*8173,2)/(2*9,8) = 200584,4 (Па)

Из условия (*) определяем, требую степень повышения давления насосом подкачки:

Рн ³ Рк-А

Откуда

Рн ³ 2535844 Па

Произведенный выше расчет всасывающей линии насоса учитывал работу установки в основном режиме и в режиме проверки, т.е. когда гидрожидкость поступала к качающему узлу из гидробака самолета Ту-154, имеющего наддув сжатым воздухом. При работе установки в режиме заправки, забор жидкости осуществляется из бака стенда. Давление в нем равно атмосферному. Вследствие этого возникает необходимость расчета всасывающей линии при работе установки в режиме заправки. Условие бескавитационной работы нагнетающего насоса остается тем же, но величины, входящие в него изменяются.

Поскольку базовый аэродром может находиться на различной высоте над уровнем моря, то примем давление внутри бака Рб =70121 Па, что соответствует высоте 3000 м по таблице международной стандартной атмосферы.

Изменится также разность между уровнем жидкости в баке и входным штуцером насоса h. Она станет h' = 0,6 м.

Суммарная длина трубопроводов сократится и станет L'=l,9 м. Вследствие этого изменится и величина потерь на трение в коммуникациях, определяемая по формуле:

DР'=0,0218*8173,2*(1,9/0,0312)*(3/2*9,8)=4982 Па

Количество изгибов трубопровода сократится до 3-х, и величина потерь давления на них составит:

DР = 3*0,15*(3 *8173,2)/(2*9,8) = 1688,9 Па

К суммарным добавятся потери давления на гидравлическом кране

x=0,5

DР = 0,5*(32*8173,2)/(2*9,8) = 1876,5 Па

Потери давления на присоединительной арматуре ΔРпа останутся такими же.

Суммарные потери давления в линии всасывания при работе установки в режиме заправки:

åР' = DР'тр +D Р'изг+D Рх +D Ррв +D Рт +D Рф+D Рпа+D Ркр

И равны:

åР' = 4982+1688,9+13135,5+1501,2+1876,5+392000+3753+1876,5 = 420813,8 Па

Введем обозначение:


А'= Р'б + h'g - åP' - (И вхg /2g)


А' = 70121+0,6*8173,2-420813,8-(3 *8173,2)/(2*9,8) = -349541,9 (Па)

Pн³ 402541,9 (Па

Таким образом, потребное повышение давления подкачивающим насосом при работе установки в режиме заправки значительно превышает этот же показатель при работе в режиме очистки или проверки.

В качестве подкачивающего насоса можно использовать лопастной, приводимый от индивидуального электродвигателя. Режим работы электродвигателя предлагается, изменять вместе с режимом работы установки. Таким образом достигается экономия электроэнергии и отпадает необходимость в системе наддува гидробака установки, что существенно снижает ее стоимость и упрощает обслуживание.

Диаметр трубопровода линии нагнетания определяется из выражения (**). Изменяется значение скорости потока жидкости. Оно становится И =8 м/с.

Расчет производится по методике, изложенной в источнике [5].



3 ОХРАНА ТРУДА.

3.1 Экспертиза безопасности рабочей зоны при техническом обслуживании гидрооборудования самолета Ту-154 (в соответствии с ОСТ 54 71001-82)


При выполнении технического обслуживания гидрооборудования самолета Ту-154 согласно „правил безопасности труда при техническом обслуживании и ремонте авиационной техники" на технический персонал АТБ возможно воздействие следующих опасных и вредных производственных факторов:

§  движущиеся самолеты, спецавтотранспорт, самоходные механизмы;

§  незащищенные подвижные элементы самолетов (элероны, интерцепторы, закрылки, рули, стойки шасси и т.д.), спецавтотранспорта, а также механизмов и производственного оборудования;

§  разлетающиеся осколки, элементы, детали производственного оборудования;

§  падающие изделия авиационной техники, инструмент и материалы при работе на значительной высоте над землей при обслуживании агрегатов, установленных на стабилизаторе, в киле, двигателях);

§  ударная волна (взрыв сосудов, работающих под давлением, паров горючей жидкости);

§  струи отработавших газов авиадвигателей и предметы, попавшие в них;

§  истекающие струи газов и жидкостей из сосудов и трубопроводов, работающих под давлением;

§  обрушивающийся самолет (с подъемников или при ошибочной уборке шасси);

§  разрушающиеся конструкции (бортовые лестницы, стремянки и другое производственное оборудование);

§  высоко расположенные части самолета;

§  повышенное скольжение (вследствие обледенения, увлажнения и замасливания поверхностей самолетов, трапов, стремянок, покрытий мест стоянок и т.д.);

§  повышенная запыленность и загазованность воздуха в зоне технического обслуживания;

§  пониженная температура поверхностей AT, оборудования и материалов;

§  повышенный уровень шума, вибрации;

§  повышенный уровень статического электричества;

§  расположение рабочего места на значительной высоте относительно поверхности земли;

§  острые кромки, заусеницы и шероховатости на поверхностях самолетов, оборудования и инструментов;

§  отсутствие или недостаток естественного света;

§  химические вещества, входящие в состав применяемых материалов, горюче-смазочные материалы, проникающие в организм через органы дыхания, желудочно-кишечный тракт, кожные покровы и слизистые оболочки.

Жидкость АМГ-10 на 92 % состоит из нефтяной фракции. Концентрация паров углеводородов до 9 мг/м3 в воздухе при длительном воздействии на организм человека может вызвать ряд отклонений, таких как изменение светочувствительности сетчатки глаз, изменение электромагнитной активности головного мозга.


3.2 Технические и организационные меры по уменьшению уровня воздействия опасных и вредных факторов


К наиболее опасным и вредным производственным факторам 154 согласно „правил безопасности труда при техническом обслуживании и ремонте авиационной техники" воздействующим на персонал АТБ в процессе ТО гидросистемы самолета Ту-154 молено отнести следующие:

§  воздействие паров жидкости АМГ-10;

§  разлетающиеся осколки и элементы производственного оборудования;

§  истекающие струи жидкостей и газов из трубопроводов и сосудов, работающих под высоким давлением;

§  незащищенные подвижные элементы производственных механизмов;

§  повышенный уровень шума;

§  повышенное значение напряжения в электрической сети применяемых стендов, замыкание которой может произойти через тело человека;

§  движущиеся механизмы.

Снижение уровня воздействия вышеперечисленных факторов на работающих может быть достигнуто путем внедрения предлагаемых настоящем дипломном проекте разработок.

Повышение уровня контролепригодности гидравлического оборудования самолета Ту-154 за счет постановки датчиков перепада давления на гидравлических фильтрах, а также установки приборов контроля внутренней негерметичности в сливных линиях отдельных распределительных агрегатов, на гидронасосах НП-89Д и насосных станциях НС-46 (лист 2 графической части проекта) позволит осуществлять контроль технического состояния указанных агрегатов без их демонтажа с борта самолета, что исключит контакт работающих с жидкостью АМГ-10, а также сократит время пребывания работника в рабочей зоне.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.