Рефераты. Конструктивное усовершенствование гидравлической системы самолета Ту-154 на основе анализа эксплуатации







1.2 Анализ работы гидросистемы самолета Ту-154


Гидравлическая система самолета Ту-154 является функциональной системой, надежность которой существенно влияет на безопасность полетов, поскольку за счет работы гидрооборудования осуществляются такие жизненно важные процессы, как управление по всем трем каналам (тангаж, крен, рыскание), уборка и выпуск шасси, управление колесами передней опоры, управление механизацией крыла.

Таким образом, появляется необходимость особого внимания за контролем исправности основных агрегатов гидравлического оборудования.

Повышение давления в линиях нагнетания гидросистем осуществляется насосами НП-89Д аксиально-поршневого типа с управлением производительностью по давлению. Такого же типа насос входит в состав насосной станции НС-46. Как показали результаты исследований, основным недостатком насосов такого типа является перетекание жидкости из линии нагнетания в линию всасывания по узлу торцевого распределения. Вследствие этого снижается давление в гидросистеме или работающих потребителях, падает КПД насоса.

Каждая из трех гидросистем в линии нагнетания оборудована линейными фильтрами типа 11ГФ9СИ и 11ГФ12СИ, которые оснащены клапанами перепуска жидкости мимо фильтроэлемента при засорении последнего. Клапан срабатывает при перепаде давления на филътроэлементе, равном  кг/см2. Поступление неочищенной жидкости в гидросистему чревато ухудшением работы или заклиниванием золотниковых пар узлов распределения, возникновением внутренних утечек в агрегатах за счет абразивного воздействия на трущиеся пары и т.д.

В процессе эксплуатации наблюдаются случаи появления внутренней негерметичности отдельных агрегатов гидросистемы. Данная неисправность может привести к следующим последствиям:

§     потеря мощности и замедленная работа приводов исполнительных агрегатов;

§     излишне высокая производительность нагнетающего насоса, что при всех включенных потребителях гидроэнергии может служить причиной их "вялой" работы;

§     ложное срабатывание исполнительных устройств.

Опасность зарождающейся внутренней негерметичности заключается в том, что она не имеет никаких внешних признаков (следов подтекания и т.п.).

В настоящее время достоверность появления внутренних утечек определяется по времени падения давления в гидросистеме при неработающих потребителях. При установлении наличия внутренней негерметичности ведется поиск ее дислокации, что является чрезвычайно трудоемким процессом.



1.3 Анализ надежности элементов гидросистемы самолета Ту-154

Количественная оценка надежности элементов гидросистемы производилась в следующем порядке:

·                    определялась интенсивность отказов элементов гидросистемы, характеризующая количество отказов в единицу времени;

·                    определялась вероятность безотказной работы элементов гидросистемы;

·                    интенсивность отказов определялась по формуле:


 (1.1)


Где: r(t) - количество отказов изделия за период времени t;

r(t+Δt) - количество отказавших изделий за период времени (t+Δt);

N(t) - общее количество изделий, находящихся под наблюдением.


Среднее значение интенсивности отказов определялось по формуле:


 (1.2)


Вероятность безотказной работы определялась как для невосстанавливаемых систем через каждые 0,5 часа типового полета, равного t=2,5 ч. При этом считалось, что за время типового полета отказавшее изделие не восстанавливает свою работоспособность.

Тогда вероятность безотказной работы за рассматриваемый промежуток времени ti можно определить по формуле:


 (1.3)


Статистические данные по отказам и неисправностям элементов гидросистемы, имевшим место в рассматриваемый период эксплуатации самолетов Ту-154, представлены в табл. 1.1.

На основании статистических данных (табл. 1.1) строим гистограмму распределения отказов по элементам гидросистемы (рис. 1.1).

Для расчета интенсивности отказов () элементов гидросистемы определяем количество интервалов (К) и наработку в интервале (Δt) по формуле:


 (1.4)


Где: n- количество отказов элементов системы;

N - количество исправных агрегатов, находящихся под контролем.


 (1.5)


Где: tmax - максимальная наработка изделия до отказа, ч;

tmin - минимальная наработка изделия до отказа.

Результаты расчетов сводим в табл. 1.2. После определения интенсивности отказов X(t)cp. Определяем вероятность безотказной работы элементов гидросистемы P(t) как для невосстанавливаемой системы за время типового полета, равное 2,5 часам. Результаты сводим в табл. 1.3.



Таблица 1.1

Статистические данные по отказам и неисправностям элементов гидросистемы самолетов Ту-154

Наименование элементов

Наработка элементов до отказа, ч

Кол-во отказов

От-ная Кол-во отказов

Причина отказов

2

2

3

4

5

1. Гидронасос НП-89

4186, 4887, 4993, 5407, 6075, 6023, 6146, 6377, 6813

9

0,114

Разрушение манжеты, башмачка

2. Разъемыйклапан

1370, 1885, 2492, 3614, 3592

5

0,063

Негерметичность

3. Электромагнитный кран КЭ-47

427, 2417, 2439, 3673, 4736, 4977, 5520, 6922, 6926, 7212, 7498, 8072

12

0,152

Негерметичность Неуборка шасси после взлета.

4. Гидроаккумулятор

721, 925 179, 1596, 2066, 2136, 2407, 2513, 3056, 3302, 3342, 3929, 4031, 4068, 4124, 4187

16

0,203

Разрушение диафрагмы. Падение давления азота

5. Трубопроводы

2622, 2730, 3385, 3884, 4562

5

0,063

Нарушение герметичности, Течь АМГ-10

6. Дроссель постоянного расхода

1721, 1733, 2722, 3687, 4682, 4757, 4981, 5486, 5962, 5987

10

0,127

Засорение дроссельной решетки

7. Гаситель пульсации

3346, 4643, 4824, 5074, 5171, 5216, 5281, 5311

8

0,101

Разрушение мембраны

8. Фильтр тонкой очистки

1116, 1512, 1646, 1864 195, 2286, 2330, 2730

8

0,101

Внешняя негерметичность срабатывания перепускного клапана

9. Кран переключения

674, 1418, 2141, 2768, 3287, 4695

6

0,076

Внутренняя негерметичность

Таблица.1.2

Значения интенсивности отказов элементов передней опоры шасси

1. Гидронасос НП-89: K = 3 Δt = 876 ч

t+Δt

4186÷ 5062

5062 ÷ 6538

6538 ÷ 6813

n(t)

N(t)

λ(t).10-4

3

42

0,815

5

39

1,464

1

34

0,338

λcp(t).10-4 = 0,872

2. Кран разъемный: K = 3 Δt = 741 ч

t+Δt

1270 ÷ 2211

2211 ÷ 2852

2852 ÷ 3592

n(t)

N(t)

λ(t).10-4

2

154

0,175

1

152

0,089

2

151

0,179

λcp(t).10-4 = 0,148

3. Кран Эл. Магн. КЭ-47: K = 4 Δt = 1911 ч

t+Δt

427 ÷ 2338

2338 ÷ 4249

4249 ÷ 6160

6160 ÷ 8072

n(t)

N(t)

λ(t).10-4

1

14

0,374

3

13

1,208

3

10

1,570

5

7

3,738

λcp(t).10-4 = 1,722

4. Гидроаккумулятор: K = 4 Δt = 867 ч

t+Δt

721 ÷ 1588

1588 ÷ 2455

2455 ÷ 3321

3321 ÷ 4187

n(t)

N(t)

λ(t).10-4

3

42

0,824

4

39

1,183

3

35

0,989

6

32

2,163

λcp(t).10-4 = 1,290

5. Трубопроводы выс. давления: K = 3 Δt = 647 ч

t+Δt

2692 ÷ 3269

3269 ÷ 396

3916 ÷ 4562

n(t)

N(t)

λ(t).10-4

2

56

0,552

2

54

0,572

1

52

0,297

λcp(t).10-4 = 0,474

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.