Рефераты. Исследование особенностей технической эксплуатации ходовой части автомобилей "Toyota"






В соответствии с годовой программой (трудоемкостью) работы выполняет группа исполнителей из 3 чел. Режим их работы организован так, чтобы был обеспечен быстрый выпуск автомобилей в утренние часы, а замену изношенных шин произвести с минимальными потерями линейного времени. Для автобусов - это дневные часы, когда плотность пассажиропотоков снижается.

Метод предварительного агрегатирования шин требует четкого взаимодействия участка с другими производственными подразделениями: группой учета шин, складом шин, окрасочным участком, зоной ТО-2. Поэтому технологический процесс разделен на ряд основных операций с закреплением их (с учетом трудоемкостей) по исполнителям, рабочим местам и времени выполнения. Для удобства пользования технологический процесс можно представить в виде линейного графика (рис. 1.6.16). При этом упрощается оценка своевременности качества выполняемых работ каждым исполнителем. Исполнители oпeрации могут друг друга заменят:, они же отвечают за качество и объем всего требуемого перечня шинных работ, включая установку колес на автомобиль. При выполнении этой операции водителем часто не соблюдаются правила комплектования автомобиля шинами, не выдерживаются нормативы на затяжку крепежа, что приводит к снижению безопасности, а у бездисковых колес к возникновению торцевого биения.


Рис. 1.6.16 Линейный график технологического процесса обслуживании шин.


Передача основного объема работ по обслуживанию шин конкретной группе исполнителей позволяет проводить оплату труда по конечному результату степени реализации ресурса шин. При этом создаются предпосылки для перевода шинного хозяйства АТП на внутрипроизводственный хозрасчет.


2 Разработка вероятностной математической модели распределения случайных величин по значениям показателя надежности

2.1 Построение интервального вариационного ряда случайных величин


Основной целью ТЭА снижение затрат на поддержание работоспособности автомобиля в заданных эксплуатационных условиях. Наиболее эффективному решению данной задачи способствует проведение экспериментальных исследований. Это позволяет получить достоверную информацию о параметрах технического состояния автомобиля, их надежности (т.е. о ресурсах агрегатов, узлов, деталей, межремонтных пробегах и т.п.), о фактическом расходовании материальных ресурсов и трудовых затратах на производство технического обслуживания (ТО) и ремонта. Под экспериментальными исследованиями понимается как постановка специальных экспериментов - стендовых, дорожных, полигонных, когда исследователь организует и влияет на ход эксперимента, задавая различные нагрузки, режимы и т.п., так и подконтрольная эксплуатация автомобилей, выполняющих обычную транспортную работу, фиксируется и накапливается информация о всех отказах и неисправностях, пробегах нагрузках, ремонтах и т.п., а также сбор статистических данных на основании различных отчетных документов по расходу запасных частей и эксплуатационных материалов, заявки на текущий ремонт и т.д.

Одной из важных особенностей практически всех показателей и характеристик процессов ТЭА является их формирование под влиянием многих переменных факторов, точное значение которых часто неизвестно. Это так называемые вероятностные процессы. Поэтому о конкретных значениях показателей, получаемых в результате проведения эксперимента, можно говорить лишь с определенной вероятностью, а сами показатели являются случайными величинами. В этой связи с целью их изучения используется математический аппарат прикладной статистики и теории вероятностей.

Особое значение в предварительной обработке результатов эксперимента имеет анализ грубых, резко выделяющихся значений, т.е. анализ однородности экспериментального распределения. Проверим однородность экспериментальных данных по критерию Романовского.

Расположим члены выборки Xi в порядке возрастания.

Таблица 1.

Исходный вариационный ряд.

i

1

2

3

4

5

6

7

8

9

10

11

12

13

Xi

14.9

16.5

19.4

19.7

22.1

22.2

23.9

24.1

25.2

27.2

28.9

29.0

29.1

i

14

15

16

17

18

19

20

21

22

23

24

25

26

Xi

34.5

35.5

36.0

37.2

39.6

39.8

41.6

42.5

43.2

45.8

47.3

48.3

50.8

i

27

28

29

30

31

32

 

Xi

51.1

52.3

55.3

61.7

65.6

70.0

 


Результаты экспиримента должны отвечать трем основным статистическим требованиям:

- эффективности оценок, т.те. минимуму дисперсии отклонения неизвестного параметра;

- состоятельности оценок, т.е. при увеличении числа (объема) экспериментальных данных оценка параметра должна стремится к его истинному значению;

- несмещенности оценок, т.е. должны отсутствовать систематические ошибки в процессе вычисления параметров.

Для обеспечения указанных требований, а также для того, чтобы экспериментальные исследования соответствовали заданной точности и достоверности, необходимо определить минимальный, но достаточный объем Nmin экспериментальных данных, при котором исследователь может быть уверен в положительном исходе.

На основании результатов экспериментальных данных Xi вычислим:

- среднее значение :


;


- среднее квадратическое отклонение:


;


- коэффициент вариации:


,


который характеризует относительную меру рассеивания Xi вокруг ;

- размах вариации, характеризующий абсолютную величину рассеивания результатов эксперимента:


,


где - соответственно максимальное и минимальное значение результатов эксперимента.

Применяя формулу Стеджарса, находим приближенную ширину интервала:


.


Принимаем ширину интервала: 10

Определяем число интервалов группирования экспериментальных данных:


.


Принимаем число интервалов K = 6.

2.2 Расчет числовых характеристик распределения случайных величин


Более полное, а главное, обобщенное представление о результатах эксперимента дают не абсолютные, а относительные (удельные) значения полученных данных. Так, вместо абсолютных значений числа экспериментальных данных ni, целесообразно подсчитать долю рассматриваемых событий в интервале, приходящихся на одно изделие (деталь, узел, агрегат или автомобиль) из числа находящихся под наблюдением, т.е. на единицу выборки. Эта характеристика экспериментального распределения называется относительной частотой (частостью) mi появления данного события (значений признака Xi):


.



Относительная частота mi при этом, в соответствии с законом больших чисел, является приближенной экспериментальной оценкой вероятности появления события .

Значения экспериментальных точек интегральной функции распределения  рассчитывают как сумму накопленных частостей mi в каждом интервале Ki. В первом интервале  во втором интервале


 


и т.д., т.е.



Таким образом, значение  изменяются в интервале [0;1] и однозначно определяют распределение относительных частот в интервальном вариационном ряду.

Другим удельным показателем экспериментального распределения является дифференциальная функция , определяемая как отношение частости  к длине интервала



и характеризующая долю рассматриваемых событий в интервале, приходящуюся на одно испытываемое изделие и на величину ширины интервала. Функция  также еще называется плотностью вероятности распределения.

Полученные результаты расчета сводим в статистическую таблицу.

Таблица 2

Результаты интервальной обработки экспериментальных данных.

Наименование параметра

Обозна- чение

Номер интервала, Ki



1

2

3

4

5

6

Границы интервала

[a;b]

14.5;24.5

24.5;34.5

34.5;44.5

44.5;54.5

54.5;64.5

64.5;74.5

Середины интервала

19.529.539.549.559.569.5







Частота

mi

8

6

8

6

2

2

Относительная частота

 0.250.18750.250.18750.06250.0625







Накопленная частота

81422283032







Оценка интегральной функции

0.250.43750.68750.2760.8751







Оценка дифференциальной функции

0.0250.043750.068750.02760.08750.1







Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.