Рефераты. Разработка процессорного модуля аппарата искусственной вентиляции лёгких






Это обеспечивается прежде всего рациональным выбором для данного больного следующих параметров:

минутного объема вентиляции;

дыхательного объема;

частоты дыхания;

отношения продолжительности вдоха и выдоха.
Минутный объем вентиляции - это сумма дыхательных объемов

за минуту. Обычно рассматривают минутный объем альвеолярной вен-тиляции , который равен разности дыхательного объема и общего объ-ема мертвого пространства , умноженной на частоту дыхания .

Дыхательный объем - это количество дыхательного газа , пода-ваемого в легкие в течении одного дыхательного цикла . Дыхательный объем должен быть достаточным для промывки "мертвого пространства " и удаления углекислого газа из легких . Зависит от пола пациента , массы его тела, частоты дыхания, возраста .

Частота дыхания - это количество дыхательных маневров ( вдох-выдох ) за минуту.

Значения основных параметров искусственной вентиляции легких нормированы ГОСТ 18856-81 .

Данный аппарат ИВЛ предназначен для длительной или повторно-кратковременной ИВЛ для взрослых и детей старше 6 лет в отделениях ин-тенсивной терапии и реанимации, послеоперационных отделениях и пала-тах.

ГОСТ 18856-81 для аппаратов группы 2 устанавливает следующие минимальные диапазоны регулирования параметров ИВЛ:

дыхательный объем 0,2 ... 2,0 л;

минутная вентиляция 3 ... 30 л/мин;

частота дыхания 10 ... 50 л/мин;

отношение длительности вдоха и выдоха 1:1,5... 1:2.

Аппарат используется в различных случаях медицинской практики. ИВЛ проводится больным разной возрастной категории. Параметры ИВЛ у разных людей сильно отличаются, поэтому целесообразно расширить диа-пазон регулирования параметров ИВЛ (дыхательный объем, минутную вентиляцию, частоту дыхания и т.д ), чтобы врач мог в каждом кон-кретном случае установить требуемые параметры ИВЛ.

Анализируя существующие аппараты ИВЛ и в соответствии с ГОСТ 18856-81 в рассматриваемом аппарате необходимо иметь возможность ре-гулировать параметры в следующих пределах:

дыхательный объем 0,1 ... 2,5 л;

минутная вентиляция 1 ... 50 л/мин;

частота дыхания 10 ... 99 л/мин;

отношение длительности вдоха и выдоха 1:4 ... 4:1.

Границы регулирования положительного давления в конце вдоха должны быть 0,2-2 кПа . В аппарате должен обеспечиваться контроль среднеинтегрального и текущего давления .

Аппарат должен обеспечивать подачу дыхательной смеси пациенту по нереверсивному дыхательному контуру . Необходимо также обеспе-чить возможность работы аппарата во многих режимах.

Для обеспечения этих требований целесообразно управление аппара-том осуществлять с помощью микропроцессора. Применение перепро-граммируемой памяти программ позволит создать гибкую систему управ-ления.

Индикацию установленных параметров для улучшения восприятия не-обходимо отображать на цифровых табло. При работе аппарата должны отображаться такие параметры : минутная вентиляция , частота вентиля-ции , отношение длительности вдоха к длительности цикла , объем вдоха , скорость вдувания , температура дыхательной смеси.

Увеличение температуры и влажности вдыхаемого воздуха на пути окружающая среда - легкие происходит благодаря уникальной способно-сти дыхательных путей независимо от колебаний температуры и влажно-сти воздуха нагревать вдыхаемую газовую смесь до температуры тела и на-сыщать ее водяными парами.

При искусственной вентиляции легких возникает местное пересыхание и охлаждение слизистой оболочки трахеи и бронхов. В зависимости от продолжительности и интенсивности действия этих факторов могут воз-никнуть повреждения слизистой оболочки трахеи и бронхов, разрушение мерцательного эпителия, образование корок, нередко закупоривающих бронхи, возникновение деструктивного бронхита, чреватого тяжелыми бронхолегочными осложнениями. У маленьких детей к этому могут доба-виться нарушения общего водного и теплового баланса.

На основании изложенного выше при ИВЛ необходимо использовать увлажнитель для увлажнения и обогрева вдыхаемого газа. Границы регу-

лирования температуры газа в тройнике пациента должны быть32-38 °С, а относительная влажность газа 80-100% .

При выдохе дыхательная смесь охлаждается и влага конденсируется на поверхности дыхательных шлангов. Конденсат может попасть в аппарат, что нарушит его работу или в легкие пациента. Поэтому необходимо уста-новить на шланге выдоха отстойник куда бы стекала конденсировавшаяся жидкость.

В качестве дыхательной смеси в аппарате могут использоваться кислород и кислородно-воздушная смесь , закись азота , атмосферный воздух. Когда к аппарату ИВЛ подводят сжатые газы, то необходимо пре-дотвратить возможность попадания во входную линию аппарата любого другого газа, кроме того, для которого она предназначена. Такая опасность должна предотвращаться применением невзаимозаменяемым для разных газов соединений между их источниками и аппаратом, надлежащей марки-ровкой соединительных устройств. Прокладка газовых магистралей внутри аппарата также должна осуществляться с применением невзаимозаменяе-

^

мых соединений и надлежащей маркировки.

Необходимо соблюсти меры для предотвращения повышения давле-ния в дыхательном контуре выше допустимого 6кПа (60 см вод.ст.), что может привести к разрыву легких. Для этого можно использо-вать пружинный предохранительный клапан.

Во избежание несчастных случаев во время ИВЛ, особенно при дли-тельной ИВЛ, должны быть предусмотрены световая и звуковая сигнализа-

»

ции в случаях: превышение температуры дыхательной смеси выше 41 °С, непредвиденного отключения напряжения питающей сети , разгерметиза-ции дыхательного контура.

Электрическое питание аппарата должно осуществляться от сети переменного тока напряжением 220В с частотой 50Гц.

Аппарат ИВЛ должен быть надежным и удобным в эксплуатации и обеспечивать минимальные затраты времени, энергии и средств на ремонт.

При этом минимальная рабочая температура +10°С, максимальная ра-бочая температура +35 °С. Аппарат ИВЛ не работает на открытом воздухе и не подвергается воздействию атмосферных факторов.

3.2 Существующие методики проверки объемных показателей аппаратов искусственен вентиляции легких (ИВЛ)

Контроль объемных показателей -- дыхательно-го объема Vt и минутной вентиляции VM занимает важное место в создании и производстве аппаратов ИВЛ. Методики проверки этих и других характе-ристик аппаратов должны быть адекватны услови-ям их применения обеспечивать необходимую точность и воспроизводимость результатов и по возможности не требовать использования сложно-го нестандартного оборудования. Далее будут рас-смотрены только методики измерения Vt посколь-ку минутная вентиляция определяется как VM =Vm *f (f- частота вентиляции) или же деле-нием Vt, суммированного за целое число дыхатель-ных циклов, на их длительность.

До последнего времени для определения при-менялась одна из методик по ранее разработанному стандарту [3] (рис. 1).

Преимущество схемы состоит в.том, что во вре-мя выдоха нереверсивный клапан _2 пропускает в спирометр 5 только тот газ, который действительно вентилирует модель легких, однако данный клапан должен работать достаточно четко и обладать низ-ким сопротивлением. Принципиальный недоста-ток схемы -- поступление в спирометр не только действительного дыхательного объема, но и части вышедшего из аппарата 1 объема, который был за-трачен на повышение во время вдоха давления газа во всех эластичных и жестких частях дыхательного контура, соединенных с пациентом. На величину такой потери объема влияет растяжимость аппара-та Сa, которая во время вдоха подключена парал-лельно Сп (рис. 7), и можно предположить, что эта потеря объема пропорциональна величине Сa Сn.

Хорошо известно, что значения Сп сильно зави-сят от антропометрических данных и состояния ор-ганов дыхания пациента, но для проверки аппаратов ИВЛ обычно используются следующие стан-дартизованные характеристики (табл. 1).

Значения Са определяются схемой и конструк-цией аппарата, типом дыхательных шлангов, чис-лом и видом включенных в дыхательный контур частей и т. п. В табл. 2 приведены частично изме-ренные нами и частично заимствованные из экс-плуатационных документов данные о растяжимо-сти Са некоторых аппаратов ИВЛ и их компонен-тов.

Рис.1. Схемы измерения дыхательного объёма VT

1- проверяемый аппарат; 2- неверсивный клапан; 3-сопротивление модели легких Rn ; 4- растяжимость модели легких Cn; 5- Измеритель объема;

6- выходное отверстие аппарата;

Изменения по ГОСТу Р ИСО 10651.1-99 и СТ МЭК 601-2-12:2001

Введенный в действие - новый стандарт [2] и стандарт [10] требуют, чтобы аппараты ИВЛ, ис-ключая предназначенные для применения во время ингаляционной анестезии на дому и во время транспортирования, оснащались каналом измере-ния выдыхаемого дыхательного объема и (или) ми-нутной вентиляции с погрешностью не более ± 20% от действительного значения для. объ-ема свыше 100 мл:. Для контроля данного канала должна применяться методика с. использованием схемы, представленной на рис. 2.

Действительное значение дыхательного объема по данной методике определяется по формуле

VT = Cn* (Pmax - Pmin), (1)

где Сп -- растяжимость модели легких; Рmax и Pmin -- наибольшее и наименьшее значения давления в модели легких в дыхательном цикле.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.