Рефераты. Методы физиологических исследований






Датчики - это устройства, преобразующие различные физические величины в электрический сигнал. Различают генераторные и пара-метрические датчики.

Генераторные датчики под тем или иным воздействием сами генерируют электрическое напряжение или ток. К ним можно от-нести следующие типы датчиков: пьезоэлектрические, термоэлектрические, индукционные и фотоэлектрические.

Параметрические датчики под действием измеряемой функции изменяют какой-либо параметр электронной схемы и модулируют (по амплитуде или частоте) электрический сигнал этой схемы. Основные типы параметрических датчиков следующие: омические, емкостные и индуктивные.

Следует отметить, что такое деление датчиков условно, так как на основе термоэлектрического и фотоэлектрического эффектов созданы как генераторные, так и параметрические датчики. Например, фотодиоды и термопары служат для создания генераторных датчиков, а фото- и терморезисторы - параметрических.

Внедрение различных типов датчиков в физиологические и клинические исследования позволяет получать объективную информацию о многих функциях организма, например о сокращении мышц, смещении центра тяжести тела при перераспределении крови, давлении крови, кровенаполнении сосудов, степени насыщения крови кислородом и углекислым газом, о тонах и шумах сердца, температуре тела и многих других.

Пьезоэлектрические датчики. Создание этого типа датчиков основано на пьезоэлектрическом эффекте, который выражается в следующем: некоторые кристаллические диэлектрики (кварц, сегнетова соль, титанат бария) под действием механической деформации способны поляризоваться и генерировать электрический ток. Пьезоэлектрический датчик состоит из кристалла, на который путем напыления нанесены металлические контакты для отведения генерируемого датчиком электрического потенциала. При деформации пьезоэлектрического датчика с помощью механической системы можно регистрировать различного рода смещения, ускорения и вибрацию (например, пульс), а пьезоэлектрические микрофоны могут быть использованы для регистрации фоноэлектрокардиограммы.

Пьезоэлектрические датчики имеют некоторую емкость (100-2000 пф), поэтому они могут искажать сигналы с частотой ниже нескольких герц. Они практически безынерционны, что позволяет их использовать для исследования быстроменяющихся процессов.

Термоэлектрические датчики. Этот тип датчиков преобразует изменения температуры в электрический ток (термопара) или изменяет под влиянием температуры силу тока в электрической цепи (терморезисторы). Термоэлектрические датчики широко используют для измерения температур и определения различных параметров газовой среды - скорости потока, процентного содержания газов и т. д.

Термопара состоит из двух разнородных проводников, соединенных друг с другом. Для ее изготовления применяют различные материалы: платину, медь, железо, вольфрам, иридий, константен, хромель, копель и _др. В термопаре, состоящей из меди и константана, при разности температур ее соединений в 100°С возникает электродвижущая сила, равная примерно 4 мВ.

Терморезисторы - это полупроводниковые резисторы, способные уменьшать свое сопротивление по мере повышения температуры. Существуют резисторы, сопротивление которых с повышением температу-ры увеличивается, их называют позисторами. Терморезисторы выпускают в самом разнообразном конструктивном оформлении. Терморезисторы следует включать в цепи измерительного моста постоянного тока. Их широко используют для создания электротермометров.

Фотоэлектрические датчики, или фотоэлементы. Этот тип датчиков представляет собой устройства, которые изменяют свои параметры под действием света. Различают три типа фотоэлементов: 1)с внешним фотоэффектом, 2) с запирающим слоем (фотодиоды), 3) с внутренним фотоэффектом (фоторезисторы).

Фотоэлементы с внешним фотоэффектом представляют собой вакуумные или наполненные газом баллоны. В баллоне расположе-ны два электрода: катод, покрытый слоем металла (цезий, сурьма), способного под действием света испускать электроны (внешний фотоэффект), и анод. Фотоэлементы этого типа требуют дополнительного пита-ния для создания внутри элемента электрического поля; их включают в сеть постоянного тока. Под действием света катод испускает электроны, которые устремляются к аноду. Возникающий таким путем ток служит показателем интенсивности светового потока. Газонаполненные фотоэлементы более чувствительны, так как фототек в них усиливается за счет ионизации электронами наполняющего газа. Однако по сравне-нию с вакуумными фотоэлементами они более инерционны.

Фотоэлементы с запирающим слоем используют в ряде медицинских приборов (например, в пульсотахометрах, оксигемометрах и др.). Фотоэлемент этого типа представляет собой железную или стальную пластинку 1, на которую нанесен слой полупроводника 2. Поверхность полупроводникового слоя покрыта тонкой металлической пленкой 4. Одним из электродов является пластинка, другим - металлическая пленка на полупроводнике 5. Для надежности кон-такта пленка по периметру уплотнена более толстым слоем металла 3. При изготовлении фотодиода запирающий слой формируется или между полупроводником и пластиной, или между полупроводником и пленкой.

При освещении фотодиода кванты света выбивают из полупроводника электроны, которые проходят через запирающий слой и заряжают отрицательно один электрод; сам полупроводник и другой электрод приобретают положительный заряд. Следовательно, фотодиод при его освещении становится генератором электрической энергии, величина которой зависит от интенсивности светового потока. Фототек у фотодиодов можно значительно увеличить, если к электродам фотодиода приложить напряжение от внешнего источника постоянного тока.

Фоторезисторы обладают свойством менять свое активное сопро-тивление под влиянием светового потока. Они имеют высокую чувствительность в широком диапазоне излучения от инфракрасного до рентгеновского. Их чувствительность зависит от величины напряжения измерительной схемы. Фоторезисторы включают в цепь измерительного моста, который питается от источника постоянного тока. Изменение сопротивления фоторезистора под действием света нарушает балансировку моста, что приводит к изменению величины тока, текущего через измерительную диагональ моста.

Фотодиоды менее чувствительны, чем фоторезисторы, но и менее инерционны. Внешний вид датчика с фотоэлементом, используемого для пульсотахометрии.

Индукционные датчики. Этот тип датчиков применяют для измерения скорости линейных и угловых перемещений, например вибрации. Электродвижущая сила в индукционных датчиках возни-кает пропорционально скорости перемещения проводника в магнитном поле перпендикулярно направлению магнитных силовых линий или при перемещении магнитного поля относительно проводника.

Омические датчики. Эти датчики способны изменять свое сопротивление при линейных и угловых перемещениях, а также при деформации и вибрации.

Существуют различные типы омических датчиков. В реостатных и потенииометрических омических датчиках изменение их сопротивления достигается за счет перемещения подвижного контакта, который имеет механическую связь с объектом преоб-разуемого перемещения. Чувствительность этих датчиков сравнительно невелика и составляет 3-5 В/мм. Точность преобразования может быть довольно высокой (до 0,5%) и зависит от стабильности питающего напряжения, точности изготовления сопротивления датчика, его атурной стабильности и других факторов. Эти датчики имеют простую конструкцию, малые габариты и массу, могут быть включены в цепь постоянного и переменного токов. Однако наличие подвижного контакта ограничивает срок службы этих датчиков.

В проволочных омических датчиках (тензодатчиках) подвижный акт отсутствует (рис. 8, Г). Под влиянием внешних сил эти датчики меняют свое сопротивление за счет изменения длины, сечения и удельного сопротивления металлической проволоки. Точность преобразования составляет 1 - 2%. Тензодатчики имеют малые габариты, массу инерциальность и удобны для исследования малых перемещений.

Кроме обычных проволочных датчиков в последние годы нахо-дят широкое применение полупроводниковые датчики (например, гедисторы), у которых тензочувствительность в 100 раз выше, чем у проволочных.

Емкостные датчики. Принцип действия этих датчиков основан на том что преобразуемые физиологические показатели (давление, изменение объема органа) влияют на определенные параметры датчика (диэлектрическую проницаемость, площадь обкладок, расстояние между обкладками) и тем самым изменяют его емкость. Эти датчики имеют высокую чувствительность и малоинерционных Использование дифференциальных емкостных датчиков позволяет повышать их чувствительность и помехоустойчивость. Этот тип датчиков нашел широкое применение в электрофизиологической и диагностической аппаратуре. Они используются, например, в измерителях кровяного давления, плетизмографах, сфигмографах и других приборах, которые предназначены для преобразования неэлектрических величин, отражающих физиологические функции, в пропорциональные электрические величины. Реальная конструкция емкостного датчика приведена на рис. 2, Г и 7, Г, а на рис. 81 показана схема установки для регистрации моторики желудка с помощью емкостного датчика.

Индуктивные датчики. Преобразующее действие этих датчиков основано на свойстве катушки индуктивности изменять свое сопро-тивление. Этого можно достигнуть при введении в нее ферромагнитного сердечника или при изменении величины зазора в магнитном сердечнике, на котором находится катушка.

Для преобразования сравнительно больших перемещений (более 5-10мм) используют индуктивные датчики с подвижным сердечником. Такой тип датчика использован в некоторых конструкциях баллистокардиографов. Для преобразования малых перемещений (менее 5мм) могут использоваться датчики с изменяющимся зазором магнитопровода. Индуктивные датчики могут быть выполнены в виде трансформатора или дифференциального трансформатора с двумя встречными обмотками. В последнем случае выходной сигнал будет более мощным. Индуктивные датчики высокочувствительны. Их инерционность зависит от Динамических свойств подвижных элементов датчика.

ИЗМЕРИТЕЛЬНЫЕ СХЕМЫ

Любой тип датчика, преобразующего ту или иную функцию в электрический сигнал, должен быть включен в измерительную цепь. Наиболее широкое распространение получили следующие измерительные схемы: мостовая схема с питанием постоянным или переменным током, дифференциальная схема, а также колебательный контур, в которые включаются измерительные (регистрирующие) приборы. Чувствительность дифференциальных измерительных схем выше, чем мостовых.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.