Рефераты. Разработка месторождений газоконденсатного типа






В связи с тем, что в рыночных условиях при колебаниях спроса на газ и жидкие углеводороды повышается вероятность реализации на россий- ских газоконденсатных месторождениях сайклинг-процесса, мировой опыт его применения представляет большой интерес [10, 26, 44].

Ниже анализируются результаты осуществления сайклинг-процесса зарубежом, а также результаты единственного, практически реализованного в странах СНГ сайклинг-процесса на Новотроицком ГКМ (Украина).

Опыт проектирования разработки крупнейшего газоконденсатного месторождения Канады Кэибоб чрезвычайно интересен в смысле комплек­сного решения проблемы использования полезных ископаемых с учетом требований по охране недр и окружающей среды.

Газоконденсатное месторождение Кэибоб, открытое в сентябре 1961 г., расположено в провинции Альберта, в 300 км к северо-западу от г. Эдмонтона. Продуктивные отложения, сложенные в основном пористы­ми доломитами, приурочены к рифогенному массиву верхнего отдела сви­ты Свои Хиллс, образующему вытянутую с северо-запада на юго-восток структуру длиной около 60 км и шириной 3,5 — 9 км. Эти отложения ос­ложнены межрифовым каналом значительных размеров, положение кото­рого четко не зафиксировано. Створ канала заполнен плотными известня­ками. По всей площади месторождения, пласты которого регионально по­гружаются в юго-западном направлении с наклоном 1,05 м/км, продуктив­ные отложения подстилаются темными битуминозными карбонатами ниж­него отдела свиты Свои Хиллс средней мощностью 33 м. Наряду с плотны­ми известняками здесь представлены и пористые доломиты. Мощность продуктивного горизонта изменяется в пределах от 0 до 109 м. Покрыш­кой залежи служат плотные битуминозные известняки свиты Беверхилл Лейк. Таким образом, ловушка газа и конденсата на месторождении Кэи­боб образовалась в результате литологического выклинивания и литологи-ческого экранирования в подошве и кровле.

Начальное пластовое давление в газоконденсатной залежи, приве­денное к абсолютной отметке средневесовой плоскости массива 2307 м, составляет 32,4 МПа. Пластовая температура = 114 °С), как и давление, аномально высокая для глубин залегания около 2300 — 2350 м. Запасы пластового газа площади В составляли 93,5 млрд. м3, в том числе запасы товарного сухого газа — 63,3 млрд. м3, конденсата (С5+) — 40,6 млн. м3, сжиженных газов (С3 —С4) — 20,5 млн. м3, серы — 21,1 млн.т. В целом по месторождению запасы пластового газа были равны 110,6 млрд. м3, конденсата — 48 млн. м3.

Газоконденсатная залежь Кэибоб массивная. На западе она ограничена пересечением кровли рифа с ГВК, а на востоке — выклиниванием свиты Свои Хиллс, замещающейся плотными известняками. По данным ис­следования скважин, после вскрытия водонасыщенных отложений выяви­лось постепенное снижение пористости и проницаемости в направлении с северо-востока на юго-запад. Это снижение обусловлено как увеличением доли плотных рифогенных известняков, так и уменьшением пористости доломитовых интервалов. Средние значения пористости и проницаемости водоносной зоны составляют 6 % и 25-10-15 м2. По данным замеров давления в скважинах, расположенных за пределами ГВК, установили взаи­модействие водоносных зон пласта Д-3 месторождения Пайн-Крик и Беверхилл Лейк месторождения Кэибоб. Отбор 6,72 млрд.м3 газа из залежи Д-3 (Пайн-Крик) обусловил снижение давления на 0,34 МПа.

Расчеты показали, что в Пайн-Крик вторглось 16,54 млн. м3 воды, в том числе 10,32 млн. м3 — из зоны, подстилающей залежь Д-3. Остальная вода поступила из сопредельных водоносных областей, главным образом рифовой зоны Беверхилл Лейк. Это подтверждается снижением давления в залежи (площадь В) на 4,1 МПа.

Продуктивность и приемистость рассчитывались на основании данных по исследованию скважин с использованием известной степенной зависи­мости дебита от разности квадратов пластового и забойного давлений. Ре­зультаты обработки данных исследования применялись для построения карты равной производительности скважин, с помощью которой определя­ли параметр С в уравнении притока для неисследованных скважин. Макси­мально допустимая депрессия устанавливалась, исходя из необходимости предотвращения образования конуса воды, на уровне 0,012 МПа/м в про­дуктивной мощности ниже нижних перфорационных отверстий. Допуска­лось превышение этого значения вплоть до 0,023 МПа/м.

Газоконденсатная система месторождения Кэйбоб была недонасыщена высококипящими углеводородами — давление начала конденсации находи­лось на уровне 23,4 МПа. Компонентный состав пластовой смеси приведен в табл. 1.19.

Хотя в интервале снижения давления 32,4—23,4 МПа жидкая фаза в пласте не образуется, дальнейший отбор газоконденсатной смеси сопро­вождается интенсивным выпадением конденсата вплоть до давления макси­мальной конденсации рм к = 8,1— 8,4 МПа. Максимальная доля углеводо-роднасыщенного перового объема, занятая выделившимся стабильным конденсатом, составляет 5,0 %. В соответствии с изотермой текущего кон-денсатосодержания коэффициент извлечения стабильного конденсата при разработке на режиме истощения (рист =4,1 МПа) без учета продвижения подошвенной воды составляет 63 — 65 %. Такая сравнительно высокая кон-денсатоотдача обусловлена сильным недонасыщением пластовой смеси, в результате которого около 17 % от запасов конденсата отбирается до нача­ла выпадения его в пласте. Высокая концентрация в пластовой смеси серо­водорода, пропан-бутанов и конденсата определяет сравнительно низкое соотношение между объемами остаточного (сухого) и жирного газов — молярная доля остаточного газа в смеси даже при рмк не превосходит 0,712.


Физико-химические свойства пластовой смеси

Плотность газа, кг/м3.............................................................            1,03

Псевдокритическая температура, К..................................491

Псевдокритическое давление, МПа...................................5,32

Вязкость газа при давлении 32,2 МПа, мПа-с................0,036

Содержание сжиженных газов, см3/м3............................             219

Содержание конденсата (С5+), см3/м3.............................              434

Содержание серы, г/м3..........................................................           225


Компонент

Содержание компонента


% (молярная доля)


см3/м3 газа


Азот


1,12



Углекислый газ


3,42



Сероводород


16,70


-


Метан


58,56



Этан


7,56


-


Пропан


3,12


114,0


н-Бутан


1,66


71,4


Изобутан


0,78


33,5


н-Пентан


0,78


38,0


Изопентан


0,67


33,0


Гексан


1,21


67,1


Гептан + высшие


4,42


295


Всего


100,00


562


                                 Компонентный состав пластовой смеси

























Для изучения процессов вытеснения газа водой, жирного газа сухим, а также некоторых сопутствующих им явлений пользовались различными математическими моделями. Основные расчеты технологических показате­лей разработки были выполнены применительно к трехмерной трехфаз­ной модели. Математическая модель описывает нестационарное течение двух- или трехфазной системы с учетом вязкости, капиллярных и гравита­ционных сил. Все агенты считаются сжимаемыми, а их свойства (объем­ный фактор, вязкость) полагаются однозначными функциями давлений. Фазовые проницаемости задаются в виде функций. При решении данной задачи использовалась концепция «вертикального равновесия», позволяю­щая свести трехмерную фильтрацию к двухмерной. Согласно этой концеп­ции, потенциалы фаз Фжг, Фсг и Фв — постоянны по мощности пласта. Это означает, что давление по вертикали (мощности) изменяется по зако­нам гидростатики, т. е. пластовая система находится в состоянии капилляр­но-гравитационного равновесия. Строго говоря, данная концепция равно­значна допущению о бесконечно большой проницаемости — по вертикали. На практике же достаточным основанием для использования «вертикально­го равновесия» является высокая проницаемость по вертикали, существен­ное проявление гравитационных эффектов, низкие вязкости агентов и т. п. Все эти условия характерны для месторождения Кэйбоб, в связи с чем концепцию «вертикального равновесия» применили для расчетов продвиже­ния подошвенной воды в залежь, а также перемещения границы газ — газ при процессе рециркуляции газа. В результате решения соответствующей системы уравнений получается распределение насыщенностей (площадное) в каждой ячейке моделируемой области фильтрации. Допущение верти­кального равновесия позволяет установить распределение насыщенности и по мощности залежи (высоте ячейки). Таким образом, метод вертикально­го равновесия позволяет существенно облегчить (не в ущерб точности ре­зультатов) решение задачи.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.