Рефераты. Разработка месторождений газоконденсатного типа






Наряду с интенсификацией добычи нефти представилась возможность ввести в эксплуатацию газоконденсатную зону, что повысило экономич­ность системы разработки. Ликвидация прорывов газа в нефтяную зону улучшила коэффициент его утилизации.

Несмотря на высокую оценку эффективности барьерного заводнения, полнота использования запасов нефти не удовлетворяет компанию "Юнион ойл", которая разрабатывает месторождение Адена. В связи с этим компа­ния обратилась к третичным методам добычи. Лабораторными опытами было установлено, что в местных условиях для извлечения остаточной неф­ти целесообразно использовать метод смешивающегося вытеснения, преду­сматривающий образование в пласте оторочки из пропана и продвижение ее путем попеременной закачки газа и воды. Поэтому в 1962—1965 гг. про­вели два промышленных эксперимента, результаты которых показали, что основные затруднения на пути промышленного внедрения метода смешива­ющегося вытеснения связаны с регулированием коэффициента охвата.

На фоне общего потока воды от начального ГНК в глубь оторочки за­качиваемый через одиночные скважины пропан продвигался в этом же на­правлении узкими языками. Временное прекращение барьерного заводне­ния в полосе одного из опытных участков привело к локальному вторже­нию в эту зону газа из газоконденсатной шапки. Зафиксированы также быстрые прорывы газа, закачиваемого вслед за пропаном, в наблюдатель­ные скважины. Коэффициент вытеснения в охваченных зонах по расчету близок к 1, но коэффициенты охвата примерно в 4 раза ниже прогноз­ных.

Накопленный в ходе промышленных экспериментов опыт позволяет специалистам в общем оптимистично оценивать возможности смешиваю­щегося вытеснения остаточной нефти. Предположительно на 1 м3 закачан­ного пропана можно добыть 2 м3 нефти. Соотношение затрат и прибылей в этом случае оказывается выгодным. Поэтому можно было ожидать, что после окончания заводнения приступят к третичной разработке месторож­дения Адена.

Прогрессивная технология барьерного заводнения с использованием загустителя воды была испытана на нефтегазовом месторождении Норт Ист Холсвил (США).

Залежь Крейн месторождения расположена в округе Харисон (штат Техас) и приурочена к оолитовым известнякам, залегающим на глубине 2100 м. Она была открыта в 1950 г. и считалась газовой, пока в 1956 г. не была обнаружена нефтяная оторочка.

Продуктивный интервал представлен двумя тонкими пропластками с окнами слияния в пределах нефтяной оторочки. Средняя эффективная мощность равна 2,4 м, пористость коллекторов — 17 %, проницаемость 50-10-15 м2. В структурном отношении залежь представляет собой пологую моноклиналь вытянутой формы. Площадь продуктивности оценивается в 6,9 тыс. га, из них 2,8 тыс. га занимает оторочка. Начальные запасы нефти составляли 2,7 млн. м3. Нефть легкая, летучая.

Добыча газа до обнаружения нефтяной оторочки вызвала смещение ее вверх по структуре. Четкого контакта газ —нефть к 1956 г. уже не было, а образовалась широкая переходная зона в интервале отметок от —1920 до —1950 м.

Оторочку быстро разбурили и ввели в эксплуатацию. Нефть, однако, продолжала мигрировать в газовую шапку. Пластовое давление снижалось быстрее, чем это могло быть вызвано отбором нефти. Наряду со смещени­ем оторочки наблюдались локальные прорывы в нее газа. Большинство скважин работало с ГФ более 3500 м3/м3, и поэтому дебиты их были резко ограничены.

В такой ситуации единственным реальным методом, способным оста­новить миграцию нефти, было признано барьерное заводнение. Проведен­ные расчеты показали, однако, что водяной барьер окажется недостаточно эффективным. Закачиваемая вода в сложившихся условиях будет вторгать­ся в основном в газовую зону и полностью остановить нефть не сможет. Возникла идея загустить воду с помощью водорастворимого полимера. В результате лабораторных и промысловых экспериментов сделан вывод о том, что для создания эффективного барьера между нефтяной и газовой зонами в закачиваемую воду достаточно ввести 0,025 % частично гидролизованного полиакриламида типа пушер.

Под закачку воды перевели две газовые скважины, которые вместе с двумя дополнительно пробуренными создали довольно плотный "барьер­ный" ряд, примерно отвечавший текущему положению ГНК. В мае 1963 г. через скв. 37-2 и 35-1 начали закачивать воду с расходом 480 м3/сут. В ноябре в воду стали вводить полимер, поддерживая его концентрацию на уровне 0,025 %. Из промежуточных скв. 36-1 и 37-3 в начальный период заводнения отбирали жидкость и газ для ускоренного образования барье­ра.

В январе 1965 г., после того как было закачано 67 т пушера, перешли к нагнетанию пресной воды. В октябре 1967 г. под закачку переоборудова­ли скв. 36-1 и 37-3. К этому времени выяснилось, что дебиты эксплуатаци­онных нефтяных скважин, расположенных по соседству с барьером, за­метно выросли, а газовый фактор снизился с нескольких тысяч до 60 м3/м3. На фронте вытеснения, судя по этим изменениям, сформировался нефтяной вал. Последнее явилось неожиданностью, поскольку из-за высо­кой газонасыщенности коллектора на образование нефтяного вала здесь не рассчитывали.

Одновременно с барьерным начали осуществлять площадное заводне­ние центральной части оторочки. Для этого под нагнетание оборудовали шесть скважин, приемистость которых составляла в среднем 320 м3/сут. Через пять месяцев было зафиксировано влияние заводнения на работу скв. 25-1, 20-1, 10-1 и 11-1. Период безводной добычи был непродолжительным. Из-за неоднородности пласта прорывы воды происходили при низ­ких коэффициентах охвата.

Сопоставление показателей разработки центральной части нефтяной оторочки и полосы, прилегающей к барьеру, дало основание считать, что закачка полимера гасит гетерогенную неустойчивость вытеснения. В связи с этим было принято решение закачать в центральные нагнетательные скважины порции полимерного раствора повышенной концентрации, что­бы блокировать промытые водой зоны пласта. Эту операцию начали в ию­ле 1964 г. В течение 80 сут в скв. 12-1, 15-1, 44-1 и 66-1 закачивали 0,05 %-ный раствор пушера, затем перешли к нагнетанию воды. Спустя два меся­ца было зафиксировано значительное повышение дебитов и снижение об-водненности нефти по скв. 10-1 и 11-1. Остальные эксплуатационные сква­жины на закачку полимера реагировали слабо.

К ноябрю 1965 г. полимерное заводнение распространили на западную часть нефтяной оторочки. Здесь с самого начала закачивали 0,025 %-ный раствор пушера, причем общий его объем составил 8 % объема пор участ­ка. Показатели разработки этого участка оказались лучше, чем централь­ного. Это подтверждает известное положение, что при закачке полимера в локально обводненный пласт достигается меньший эффект. Закачивать по­лимер выгоднее с самого начала операции по поддержанию пластового дав­ления.

Период эксплуатации на истощение характеризуется быстрым сниже­нием пластового давления и дебитов нефти, ростом ГФ. Максимальный ме­сячный отбор (6,75 тыс. м3) наблюдался в марте 1959 г., а к 1963 г. добыча нефти снизилась до 0,95 тыс. м3/мес. С началом заводнения отмечена ста­билизация, а в дальнейшем — повышение пластового давления с 9,8 до 13,7 МПа. По мере расширения масштабов воздействия на залежь росли отборы нефти, которые к середине 1966 г. достигли 12,6 тыс. м3/мес. Средний газовый фактор упал с 2300 до 180 м3/м3. На 01.01.1969 г. из зале­жи было добыто 650 тыс. м3 нефти, из них 450 тыс. м3 получено за счет полимерного заводнения.

При оценке эффективности полимерного заводнения продуктивную площадь разбили на семь участков, выделенных с учетом истории их раз­работки. Для каждой эксплуатационной скважины рассчитали предельный отбор нефти путем экстраполяции графиков дебитов, которые в настоя­щее время повсюду имеют тенденцию к постепенному снижению. Сумми­рованием оценили предельную нефтеотдачу по участкам и сопоставили по­следнюю с расходом полимера. При этом было установлено, что закачка пушера в количестве меньше 18,5 кг/(га-м) практически не повышает эф­фективность вытеснения нефти. Для участка № 5, расположенного в цент­ральной части оторочки, где расход полимера составил около 9 кг/(га-м), удельная нефтеотдача оценивается в 90 м3/(га-м), что близко по эффектив­ности к простому заводнению — 83 м3/(га-м).

Максимальный эффект — 211 м3/(га-м) — ожидается на участке № 2, где расход полимера составил 38,5 кг/(га-м). На соседнем с ним участке № 3 было закачано еще больше полимера — 42,5 кг/(га-м), но из-за того, что этой операции предшествовало простое заводнение, нефтеотдача здесь бу­дет ниже —128 м3/(га-м).

В среднем по залежи рассчитывают получить по 127 м3/(га-м) нефти, что в 2,5 раза превышает прогнозную нефтеотдачу, достигаемую при раз­работке оторочки на естественном пластовом режиме. Прирост нефтеотдачи за счет загущения воды полимером составит 36 мэ/(га-м). В расчете на 1 м3 добытой нефти затраты на полимер оцениваются в 2,07 долл. Несмот­ря на приближенность расчета экономических показателей, полимерное заводнение на данном месторождении оказалось выгодным.

Опыт разработки залежи Крейн показывает, насколько эффективным может быть оперативное изменение системы воздействия на нефтегазо-конденсатные пласты. Здесь была применена уникальная технология добы­чи нефти, но особенно важно то, что к ней пришли в результате система­тических наблюдений за состоянием оторочки при различных способах воздействия на пласт. Загущение воды полимером с целью создания устой­чивого барьера между нефтяной и газовой зонами само по себе является крупным достижением в области совершенствования барьерного заводне­ния. Это мероприятие, к тому же, позволило установить, что в местных условиях закачка полимера значительно улучшает коэффициент охвата. Распространение полимерного заводнения на всю нефтенасыщенную зону весьма благоприятно сказалось на нефтеотдаче. В то же время следует от­метить, что не удалось остановить движение оторочки регулированием де-битов путем форсированного отбора нефти.

Ю.В. Желтое, В.М. Рыжик, В.Н. Мартос предложили также способ разработки нефтегазоконденсатного месторождения путем частичного под­держания пластового давления в газовой шапке за счет барьерного завод­нения и регулируемых отборов нефти и газа. Согласно этому способу "су­хого поля" в течение определенного периода времени в зону ГНК нагнета­ется вода [10]. Одновременно осуществляется разработка нефтяной ото­рочки и газовой шапки. При этом темпы отбора нефти из оторочки и газа с конденсатом из газовой шапки устанавливаются такими, чтобы к концу выработки основных запасов нефти часть газоконденсатной зоны осталась необводненной. После прекращения закачки воды нефтяную оторочку продолжают разрабатывать на истощение до заданного предела обводнен-ности продукции. В это же время идет интенсивный отбор газа из зоны "сухого поля". Поскольку даже частичного поддержания давления после прекращения нагнетания воды не ведется, в результате отбора нефти и га­за пластовое давление достаточно быстро снижается, а газонасыщенный объем обводненной зоны увеличивается и соответственно происходит вне­дрение воды из этой зоны в "сухое поле". После достижения порога гидро­динамической подвижности защемленный газ обводненной зоны начинает фильтроваться не только в составе внедряющейся воды, но и как сплошная свободная фаза, обеспечивая увеличение дебитов газа эксплуатационных скважин. Авторы способа признают, что рассчитанные темпы добычи газа с конденсатом могут оказаться слишком низкими. В этом случае рекомен­дуется устанавливать отборы нефти и газа в соответствии с существующи­ми потребностями, но после обводнения заранее установленной части газо­конденсатной шапки "сухое поле" следует законсервировать. Размеры "су­хого поля" можно выбрать с таким расчетом, чтобы к моменту предельно­го снижения давления полного обводнения этого поля не произошло и имелась бы возможность в период доразработки залежи отбирать газ без воды. Экспериментальные исследования авторов способа показали, что в этом случае размеры "сухого поля" должны быть значительными.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.