Рефераты. Структурный, кинематический и силовой анализ механизма. Синтез зубчатой передачи






2) векторы, соединяющие концы векторов абсолютных скоростей, не проходящие через полюс, изображают относительные скорости. Направлены они всегда к той букве, которая стоит первой в обозначении скорости.

3) каждое подвижное звено механизма изображается на плане скоростей соответствующим одноименным, подобным и сходственно расположенным контуром, повернутым относительно схемы механизма на 90° в сторону мгновенного вращения данного звена. Это свойство плана называется свойством подобия и позволяет легко находить скорость точек механизма.

Находим скорость точки А кривошипа О1А по формуле, м/с:


VA = w1OA; VA = 17,27 × 0,120 = 2.0724 (2.8)


Вектор  направлен перпендикулярно к оси звена О1А в сторону его вращения. Задаемся длиной отрезка РVа (произвольно), который на плане будет изображать скорость  точки А;  . Тогда масштаб плана скоростей, м/с × мм-1,

 . (2.9)


Из произвольной точки PV, в которой помещены и точки опор О1, О2, откладываем перпендикулярно к звену О1А отрезок РVа = 70 мм.

 Для дальнейшего построения плана скоростей и определения скорости точки В составляем уравнение:


;(2.10)


где     - скорость точки А, известна по значению и направлению;

 – относительная скорость точки В во вращении вокруг точки А.

 - скорость точки О2 (равна нулю);

 - относительная скорость точки В во вращении вокруг точки О2

Относительные скорости  и  известна по линии действия:  перпендикулярна к звену АВ, проводится на плане из точки а (конец вектора );  перпендикулярна к звену ВО2, проводится на плане из точки О2 (в полюсе Рv). На пересечении этих двух линий действия получим точку b конец вектора скорости  точки В:


·  м/с. (2.11)


Вектор ab изображает скорость  точки В в относительном вращении вокруг точки А:


·  м/с. (2.12)


Вектор О2В изображает скорость  точки В в относительном вращении вокруг точки О2:


=·  м/с. (2.13)


Положение точки С находим на плане скоростей по свойству подобия (из пропорции), мм:

 (2.14)


Подставив значения длины звеньев на схеме и длины соответствующих отрезков на плане, определяем место точки С на плане скоростей. Соединив ее с полюсом, определяем значение скорости точки С, м/с:


 . (2.15)


Для определения скорости точки D воспользуемся векторными равенствами:


 (2.16)


где:   – скорость точки С, известна по значению и направлению;

 – относительная скорость точки D во вращении вокруг точки С;

Относительная скорость  известна по линии действия: перпендикулярна к звену DC, проводится на плане из точки С (конец вектора ). Скорость точки D относительно стойки направлена по линии хода ползуна, проводится на плане из полюса PV параллельно ходу ползуна до пересечения с вектором относительной скорости . Точка пересечения будет точкой d. определяющей конец вектора скорости :


VD =  · ; VD = 78 × 0,013 = 1,014 м/с. (2.17)


Вектор  изображает скорость VDC точки D в относительном вращении вокруг точки С:


VDC =  · ; VDC = 0,2 × 0,013 = 0,0026 м/с. (2.18)


Исходя из теоремы подобия (третье свойство плана скоростей), находим на плане точки S1 – S5, соответствующие центрам тяжести звеньев. Соединив их с полюсом PV, определяем скорости центров тяжести звеньев механизма, м/с:


VS = PVS1 · kV; VS = 52·0,013=0,95

VS = PVS2 · kV; VS = 70,5 × 0,013 = 2,7;

VS = VD; VS = 1,014; (2.19)

VS = PVS4 · kV; VS = 78× 0,013 =1,014

VS = PvS3·kv; VS = 78·0,013=1,014

Пользуясь планом скоростей, определяем угловые скорости звеньев
2, 3, 4, с-1:


 ;

 ; (2.20)

 ;


Угловая скорость ползуна w5 = 0, так как он движется поступательно по неподвижной направляющей.

Для выяснения направления угловой скорости звена АВ вектор скорости , направленной к точке b плана, мысленно переносим в точку В звена 2 и определяем, что он стремится повернуть это звено вокруг точки А против часовой стрелке. По аналогии определяем направления угловых скоростей звеньев w4 (против часовой стрелки) и w3 (против часовой стрелки).

2.6 Определение ускорений точек механизма методом планов ускорений


При помощи планов ускорений можно найти ускорения любых точек механизма. Для построения планов ускорений по аналогии с планами скоростей следует пользоваться их свойствами. Свойства такие же, как и у планов скоростей, кроме третьего, где фигура, подобная одноименной жесткой фигуре на плане положений механизма, повернута на угол (180° – j¢) в сторону мгновенного ускорения e данного звена,


где . (2.21)


Поскольку полные относительные ускорения состоят из геометрической суммы тангенциальных и нормальных составляющих, то концы векторов абсолютных ускорений обозначают буквами, соответствующими названию точек.

Считая известными ускорения шарнирных точек
(аО = аО = 0), помещаем их на плане ускорений в полюсе рa. Звено О1А вращается равномерно, поэтому точка А имеет только нормальное ускорение , которое направлено по звену О1А к центру вращения О1 (см. рис. 2.3, в). Определяем его по формуле, м/с2 :


; . (2.22)

Принимаем (произвольно) длину отрезка , изображающего вектор ускорения  точки А, равной 180 мм. Тогда масштаб плана ускорений, м/с2×мм-1,


; . (2.23)


Из полюса плана ра откладываем  параллельно звену О1А в направлении от А к О1.

Рассматривая движения точки В со звеном АВ, составляем векторное уравнение:


, (2.24)


в котором ускорение точки А известно по значению и направлению. Определяем нормальное ускорение точки В относительно А, м/с2 ,


 ; (2.25)

 .


От точки а плана ускорений параллельно звену АВ в направлении от точки В к точке А откладываем вектор , изображающий ускорение аВАn , величина которого:

;  мм (2.26)


Через точку n1 проводим перпендикулярно звену АВ линию действия тангенциального ускорения аВАф. Из точки О2 плана ускорений параллельно звену О2В в направлении от В к О2 откладываем вектор , изображающий ускорение аВО2n, величина которого:


  мм (2.27)


Через точку n2 проводим перпендикулярно звену О2В линию действия тангенциального ускорения аВО2ф . На их пересечении получится точка В – кон

ец вектора  изображающего ускорение аВ точки В механизма, м/с2:

 . (2.28)


Определяем тангенциальные ускорения и относительные во вращении вокруг точек А и О2, м/с2:


; ;

; ;

  (2,29)

   


Положение точки С на плане ускорений находим по свойству подобия (из пропорции):

; мм. (2.30)


Соединив ее с полюсом, определяем ускорение точки С, м/с2:


 . (2.31)


Величины ускорений центров тяжести звеньев S1, S2, S3, м/с2:


 ;

 ; (2.32)

 


Определения ускорения точки D рассматриваем движения точки D со звеньями СD. Составляем векторные уравнения:


; (2.33)


Определяем нормальное ускорение точки D (ускорение точки С известно по значению и направлению), м/с2:


 . (2.34)


На плане ускорений  можно выразить:


мм (2.35)

Отложим его параллельно звену CD на плане из точки С в направлении от D к С, а затем перпендикулярно звену CD провести линию действия тангенциального ускорения до пересечения с линией хода ползуна (это будет точка D).

Определим величины ускорений точек D, , , , , м/с2:


 ;

  (2.36)

 ;

 ;

 ;


Определяем угловые ускорения звеньев.

Угловое ускорение e1 ведущего звена О1А, совершающего равномерное движение, равно нулю.

Угловое ускорение звена 2, с-2 ,


 . (2.35)


Для определения направления углового ускорения e2 звена 2 надо мысленно перенести вектор  тангенциального ускорения  в точку В. В направлении этого вектора точка В вращается относительно точки А против часовой стрелки.

По аналогии определяем значения и направления угловых ускорений звеньев 4 и 5, с-2:

;  (по часовой стрелки);

;  (по часовой стрелки). (2.36)


3. СИЛОВОЕ ИССЛЕДОВАНИЕ МЕХАНИЗМОВ


В задачу силового исследования входит определение:

1) сил, действующих на звенья механизма;

2) реакций в кинематических парах;

3) уравновешивающей силы (момента).

Силовой анализ основан на принципе Даламбера. Сущность его заключается в том, что каждое звено может рассматриваться в условном статическом равновесии, если к нему помимо всех действующих внешних сил приложить инерционную нагрузку в виде силы инерции и момента пары сил инерции. При этом условии для каждого звена справедливы равенства:


 , (3.1)


поэтому неизвестные силы (реакции в кинематических парах) могут определяться методом статики.

Для проведения силового анализа кинематическая цепь должна быть статически определимой, т. е. число неизвестных параметров реакций должно быть равно количеству уравнений статики, которые можно составить для их определения.

Начинать силовой анализ необходимо с наиболее удаленной от ведущего звена структурной группы.


3.1 Определение реакций в кинематических парах структурных групп


Чтобы определить величины и направления сил инерции, надо знать ускорения и массы звеньев. Ускорения известны из плана ускорений механизма. Определяем вес каждого звена, Н:

;

;

; (3.2)

;

;


где  - длина звеньев, мм.

Определяем массу каждого звена, кг:

 

; ;

; ; (3,3)

.

Определяем силы инерции звеньев, Н:


;

;

; (3.4)

;

.


Определяем момент пары сил инерции для звеньев CD, О2B и AВ, совершающих сложное движение:

звено АВ-

 (3.5)

 


звено О2B-


;

 ; (3.6)


звено СD-

 (3.5)


Силовой расчет механизма начинаем с наиболее удаленной от ведущего звена группы Ассура 4 – 5 (CD), состоящей из звеньев 4 и 5, двух вращательных кинематических пар – С и D, и одной поступательной (при движении ползуна по направляющей).

Группу CD вычерчиваем отдельно в масштабе схемы механизма и в том же положении. Прикладываем к ней вместо связей две реакции:

F65 – в поступательной паре, другую F34 в шарнире С, неизменные по величине и направлению. Реакцию F34 представляем в виде двух составляющих: тангенциальной , направленной перпендикулярно к оси звена CD, и нормальной  - вдоль звена CD.

Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.