Рефераты. Система технического осмотра и ремонта






Электроэрозионное изнашивание является видом эрозионного изнашивания поверхности в результате воздействия разрядов при прохождении электрического тока. Этому виду изнашивания подвержены контакты прерывателя и свечей системы зажигания автомобильного карбюраторного двигателя.



Интенсивность изнашивания, являющаяся отношением величины износа к объему выполненной работы или к наработке, на которой происходило изнашивание детали, зависит, как видно из описания процессов разрушения деталей, от различных факторов. Поэтому обеспечение износостойкости деталей требует различных мероприятий как на стадиях конструирования и изготовления автомобилей, так и при эксплуатации.

Величина износа (И мкм) повышается в течение всего пробега (L, км) автомобиля до предельного состояния детали, но интенсивность изнашивания (vn, мкм/1000 км) различна на разных этапах работы (рис.1.3). Детали после сборки сопрягаются по выступам микронеровностей, образовавшихся при изготовлении. Размеры деталей, хотя и в пределах заданных чертежом допусков, имеют отклонения, что приводит к макро неровностям деталей - овальности, конусности, не плоскостности и т.д. Фактическая площадь контакта трущихся деталей в начальный период мала, поэтому происходит их приработка (см. рис.1.3). Приработка - это процесс изменения геометрии поверхностей трения и физико-механических свойств поверхностных слоев материала в начальный период трения, обычно проявляющийся при постоянных внешних условиях в уменьшении работы трения, температуры и интенсивности изнашивания. Уменьшение приработочных износов достигается работой деталей в облегченных нагрузочных и скоростных режимах, применением специальных масел и усиленной очисткой их от продуктов износа. На период приработки деталей (в течение 1...5 тыс. км) назначают режим обкатки автомобиля.

Период установившегося изнашивания (см. рис.1.3) характеризуется постоянной интенсивностью U= const и, следовательно, линейным возрастанием износа Я при постоянном угле наклона а прямой на графике. В этот период, составляющий для различных деталей 60...500 тыс.км пробега автомобиля, происходят срабатывание и воссоздание пример но стабильных по величине микро неровностей поверхностей и посте пенное накопление макроповреждений - изменение размеров и формы детали.

Износ увеличивает зазоры в сопряжениях деталей, что приводит к ухудшению условий смазывания и повышению динамических, ударных нагрузок; разрушаются специально обработанные износостойкие поверхностные слои. Интенсивность изнашивания повышается - наступает период аварийного изнашивания (см. рис.1.3). Чтобы не допустить полного разрушения детали и всего сопряжения, предельный износ Имах, соответствующий предельному состоянию детали, назначают на начало этого периода.

На работоспособность подвижных сопряжений решающее влияние оказывают зазоры между деталями, которые, как отмечалось выше, увеличиваются в процессе работы вследствие изнашивания деталей. Как правило, в сопряжение входят детали, различной стоимости и сложности, с различной интенсивностью изнашивания. В автомобилях такими сопряжениями являются: коленчатый вал и подшипники; распределительный вал и подшипники; цилиндры и поршневые кольца двигателя; тормозные барабаны и накладки колодок и. т.д.

Схема типичного случая изменения зазора S в течение пробега Lp автомобиля до предельного износа Итах деталей сопряжения представлена на рис.1.4, где видны основные закономерности изменения зазора в сопряжении деталей:

изнашивание деталей А и Б в периоды I, II увеличивает зазор от номинального SH, полученного при сборке, до приработочного Stt и предельного Snp, соответствующего предельному износу Итах быстроизнашивающейся детали;

интенсивность изнашивания деталей сопряжения, как правило, различна (р>а), поэтому быстро изнашиваемую деталь Б сопряжения заменяют па запасную часть Б1, стремясь восстановить зазор примерно до номинального 5;

при значительном износе детали А на пробеге автомобиля до замены детали Б для восстановления зазора S'H целесообразно установить запасную часть Б1 не с номинальным, а с ремонтным размером; при этом, если деталь типа вал (поршень, поршневое кольцо), ремонтный


Рис.1.4 Схема изменения зазора в сопряжении деталей размер должен быть больше номинального, а если типа отверстие (шатунные и коренные вкладыши) - меньше номинального; периоды процесса изнашивания после восстановления зазора повторяются - I', II' - до предельного износа ИмахА, однако вследствие накопления повреждений не замененной деталью А интенсивность изнашивания деталей может несколько возрастать; наработка до замены запасной части Б', как правило, меньше ресурса детали Б из-за возрастания интенсивности изнашивания и несовпадения ресурсов деталей.

В течение длительной эксплуатации автомобиля на процесс изнашивания каждого сопряжения оказывает влияние большое количество переменных факторов, связанных с особенностями изготовления и условиями эксплуатации. Рассмотренная природа изнашивания показывает, что на интенсивность процессов влияют молекулярная структура и другие свойства материалов, точность выполнения деталей, наличие и качество масла, его чистота; нагрузочный, скоростной и тепловой режимы работы, агрессивность среды, конструкция узла. Поэтому при конкретных реализациях изнашивания деталей неизбежны существенные отклонения от рассмотренной схемы (см. рис.1.4) изнашивания: изменение количества замен деталей, изменение длительности периодов (/, /', //, // '), изменение величин зазоров (Sн, Sп, Sпр), и, как следствие, ресурсов деталей. Вместе с тем общие закономерности процессов изнашивания, усталости и коррозии деталей выявляют основные направления повышения их ресурсов и в целом обеспечения надежности автомобильных конструкций при изготовлении и эксплуатации.

Коэффициент технической готовности как основной показатель работы технической службы АТП

 

Коэффициент технической готовности aт определяет долю календарного времени, в течение которого автомобиль (или парк автомобилей) находится в работоспособном состоянии и может осуществлять транспортную работу. Он выражается через отношение числа дней Дэ или автомобиле-дней АДэ эксплуатации автомобилей к сумме числа дней эксплуатации и дней простоя Др на ТО и в ремонте:


; .

Коэффициент технической готовности является одним из показателей, характеризующих работоспособность автомобиля и парков.

Рассмотрим соотношение


, откуда .


Таким образом, коэффициент выпуска непосредственно зависит от коэффициента технической готовности и коэффициента нерабочих дней.

На транспорте общего пользования фактически сложившееся отношение aв/aт равно для грузовых перевозок 0,75-0,78; для пассажирских 0,91-0,95.

В свою очередь, годовая производительность W, например, при грузовых перевозках (в т-км) непосредственно определяется при прочих равных условиях коэффициентом выпуска и, следовательно, коэффициентом технической готовности:


,


где q - номинальная грузоподъемность, т, g - коэффициент использования грузоподъемности, b - коэффициент использования пробега; lсс - среднесуточный пробег.


Состояние

Продолжительность пребывания в состоянии, дни

Вероятность состояния (коэффициенты)

Исправен, работает (в эксплуатации)

Дэ

aв = Дэ / Дц

Исправен, простаивает в ожидании работы (нерабочие дни, нет водителя)

Дн

aн = Дн / Дц

Неисправен (ремонт, ТО, ожидание ремонта)

Др

aр = Др / Дц

Все состояния - полный цикл

Дц = Дэ + Дн + Др

aв + aн + aр = 1

Таким образом, увеличение коэффициента технической готовности способствует повышению производительности автомобилей.

Рассмотрим связь коэффициента технической готовности с показателями надежности и организацией технического обслуживания и ремонта.


,


или применительно к эксплуатационному циклу


,


где Др. ц - число дней простоя автомобиля в ремонте за цикл; Дэ. ц - число дней эксплуатации автомобиля за цикл.

Продолжительность эксплуатационного цикла в днях зависит от планируемого пробега или наработки за цикл lК и среднесуточного пробега lсс:


.


Простой на ТО и ремонт за цикл Др. ц складывается из простоя в капитальном ремонте, если он производится, и простоя на ТО и ТР: Др. ц = ДКР + ДТР, ТО. Простой в капитальном ремонте обычно нормируется в календарных днях, а простой в ТО и ТР - в виде удельной нормы dТР в днях на 1000 км пробега. Таким образом, ДТР, ТО=dТРLK/1000.

Следует обратить внимание, что основная доля простоев (до 85-95%) приходится на текущий ремонт на АТП. Поэтому сокращение простоев в ремонте, производимое на АТП, является главным резервом увеличения aв и aт.

Продолжим анализ коэффициента технической готовности и рассмотрим следующее выражение:


,


где Вр = Др. ц/LК - простои автомобиля во всех видах ТО и ремонта за счет рабочего времени, дней/1000 км. В этом случае


,


где vэ - эксплуатационная скорость, км/ч; Тн - продолжительность рабочей смены (или нарядного времени), ч.

Влияние простоев в ремонте Bр и среднесуточного пробега на aт показано на рисунке 1. Необходимо отметить, что с увеличением пробега автомобиля с начала эксплуатации (с его старением) простои в ремонте возрастают, а коэффициент технической готовности уменьшается. На простой при устранении неисправностей и, следовательно, на aт влияют также условия эксплуатации, уровень организации ТО и ремонта, квалификация персонала и другие факторы.

Общий простой автомобилей с потерей рабочего времени за период его работы складывается из п простоев. В этом случае средняя наработка на отказ, вызывающий простой, xnp = LK/n. Тогда при средней продолжительности одного простоя продолжительность простоя автомобиля за эксплуатационный цикл.

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.