Рефераты. Разработка технологического процесса восстановления оси коромысел двигателя Д37






 

7.1 Расчёт величины припуска покрытий под механическую обработку


Необходимость механической обработки обусловливается тем, что топология, размеры и формы восстанавливаемых поверхностей деталей только приближены к необходимым размерам и технологическим условиям на их восстановление.

К настоящему времени в условиях практики сложились четыре схемы базирования и механической обработки деталей, в зависимости от группы их восстановления. По этим основным технологическим схемам обработки ведутся дальнейшие расчеты величин припусков у покрытий под механическую

обработку.

Припуском под механическую обработку следует называть слой металла, который удаляется с поверхности покрытий в процессе получения необходимых параметров детали. Припуск должен: а) компенсировать погрешности, полученные в результате наращивания изношенной поверхности детали железом; б) компенсировать погрешности, получаемые в результате выполнения рассматриваемых операций.

Устанавливать величину припуска следует для каждой операции в отдельности с учетом всех предъявляемых требований к восстанавливаемой поверхности.

Погрешности, возникающие при механической обработке поверхностей, носят сложный характер взаимодействия и зависят от многих причин. Погрешности от неточностей износа и упругих деформаций оборудования, инструмента, приспособлений, а также получаемые искажения формы должны учитываться операционным допуском. Операционный допуск по своей величине должен соответствовать суммарной погрешности от указанных причин.

Погрешности, полученные при выполнении предыдущей операции, шероховатость поверхности, глубина дефектного слоя, остаточные напряжения, допуск отклонения размера "допуск в металл" и погрешности, полученные на данной операции, неточность базирования, от усилий зажатия должны быть компенсированы величиной припуска.

Общая толщина покрытия электролитического железа, наращиваемого на изношенные поверхности деталей, определяется:


h = ΔhКФ+ΔhКИ+Δ, (7.1)


где ΔhКФ – слой покрытия, компенсирующий нарушение геометрической формы. Определяется величиной металла, снятого с восстанавливаемой поверхности детали, при предварительной механической обработке "на верность", для оси коромысел не превышает 0,15 мм;

ΔhКИ – слой покрытия, компенсирующий износ восстанавливаемой поверхности детали;

Δ – припуск на механическую обработку.

При бесцентровом шлифовании с продольной или радиальной подачами величина припуска на механическую обработку [1]:


2Δ=0,072+0,9δ, (7.2)


где δ – допуск на размер, равен 0,012.



2Δ=0,072+0,9*0,012=0,0828 мм, (на одну сторону – 0,0414 мм).


Износ детали равен: (16-15.94)*1.25=0.075 мм, (на одну сторону – 0,0375 мм).

Слой наращиваемого металла составит:


h=0.075+0.0375+0.0414=0.154 мм.


7.2 Предварительное шлифование "на верность"


Принимаем поперечную подачу (глубина шлифования) h = 0,02/0,01 мм/об (черновое/чистовое шлифование) и окружную скорость детали соответственно V=20/2 м/мин [3].

Число проходов:


, (7.3)


где t – припуск (для шлифования "на верность" – слой ΔhКФ на сторону) на шлифование.


;

.


Состав нормы времени в мин.:



; (7.4)


где То - основное время, мин;

Тв – вспомогательное время на установку и снятие деталей со станка, пуск и остановку станка, подвод и отвод режущего инструмента, измерения и т.п., мин;

Тдоп – дополнительное время, мин;

Тпз – подготовительно-заключительное время, мин;

n – количество деталей в партии, шт..

Основное время при поперечном шлифовании, мин:


, (7.5)


где Sпоп – поперечная подача на один оборот детали (S=0,02/0,01 мм/об);

t – припуск на шлифование (на сторону), мм.


мин; мин.


Вспомогательное время при шлифовании 0,21 мин.

Дополнительное время при шлифовании можно принять 7% от То.

Подготовительно-заключительное время рекомендуется принимать 14…18 мин.


=0,1875+0,21+0,013+18/54=0,74, мин,

=3,75+0,21+0,26+18/54=4,55, мин.


7.3 Нанесение гальванопокрытия


Оборудование:

Ванна 70-7880-1091.

Преобразователь тока АНД500/250.

Электролит: двухлористое железо – 500г/л, соляная кислота – 1,5г/л.

Для восстановления деталей машин, кроме гальванической установки, необходимы подвесные приспособления (технологическая оснастка). К подвесным приспособлениям предъявляются следующие требования:

а) обеспечение контакта с малым переходным сопротивлением,

б) получение равномерных по толщине покрытий,

в) безопасность и удобство в работе,

г) надежное крепление деталей и транспортабельность при технологических перемещениях,

д) возможность полной загрузки ванн по рабочему объему

е) унифицированность в пределах групп.

От конструкции подвесных приспособлений зависит производительность труда, качество получаемых покрытий и коэффициент загрузки гальванического оборудования.

На рис. 7.1 приведены схема подвески. Для 1 группы (куда входит ось коромысел) деталей применяются групповые переналаживаемые приспособления, вмещающие, в зависимости от размеров, по 4—12 деталей на одной подвеске. Подвески собираются из унифицированных деталей, и за счет паза в основании (дет. 5) легко регулируются на "любой размер. Повышенные требования предъявляются только к прижимам (дет. 2), которые должны быть жесткими и упругими. Поэтому прижимы изготавливаются из Ст. 65Г с последующей термообработкой. При изготовлении прижимов из Ст. 45 без термической обработки (по опыту завода АРЕМЗ, г. Москва) они быстро в процессе эксплуатации теряют исходную жесткость, и наблюдается частое выпадение деталей из подвесок при технологических перемещениях. Изоляция подвесок, за исключением контактных пяток, производится полихлорвиниловой пленкой в два слоя. Для лучшего прилегания к поверхности подвесного приспособления пленку перед обмоткой подогревают в воде при 40-60°С. Срок службы этих подвесок до ремонта равен 3-4 месяцам беспрерывной работы.


1.                 Крючок (медь)

2.                 Прижим (Ст. 65)

3.                 Болт и гайка (М8)

4.                 Пятка (Ст. 3)

5.                 Основание

Рисунок 7.1 – Подвеска для групповой гальванической оснастки


Ванны для I группы восстанавливаемых деталей имеют общий объем не более 1500 л. Электролит, находясь в ванне указанного объема, качественно и быстро прогревается. Под качеством прогрева электролита подразумевается постоянное значение температуры по всему объему.

При объемах ванн свыше 1500 л начинают наблюдаться слои электролита с различным перепадом температур. С увеличением объемов ванн неравномерность температурных полей растет.

Завешивание подвесных приспособлений с восстанавливаемыми деталями лучше двухрядное, в шахматном порядке, по длине ванны. Аноды располагаются по боковым поверхностям, вдоль ванны. Количество ярусов восстанавливаемых деталей на одном подвесном приспособлении колеблется от двух до шести и зависит от длины монтируемых деталей.

Исходя из планировки расположения деталей 1 группы в ванне осталивания и прогрева электролита, целесообразно иметь ванну габаритом 700*2000*800. Ширину ванны вверху следует задать на 30 см больше для лучшей ее промывки при технологических осмотрах. При таких габаритах в ванну входит 9 подвесок в шахматном порядке с шагом 200 мм, т.е. один завес вмещает 54 детали (на одной подвеске 6 деталей).

Для уменьшения испаряемости воды зеркало ванны закрывается полиэтиленовой крошкой из расчета толщины защитного слоя 0,7—1,0 см. Перед употреблением крошка вываривается в подкисленной воде (10% НСl) при температуре кипения воды t = 30 мин. Операцию выварки производят с целью предупреждения занесения в электролит органических примесей. При потемнении защитного слоя до ярко-коричневого. Цвета его снимают с поверхности ванны и вываривают до просветления аналогичным образом [4].

Рассчитываем норму времени (на осталивание) по формуле:


, (7.6)


где То – основное время осталивания;

Т1 – время на загрузку и выгрузку деталей (0,2 ч);

КПЗ – коэффициент, учитывающий дополнительное и подготовительно-заключительное время;

nд – число деталей, одновременно наращиваемых в ванне (54 шт.);

ηИ – коэффициент использования ванны (0,95).

Основное время нахождения деталей в ваннах (время наращивания металла) определяется по зависимости:


, (7.7)


где h – толщина наращивания, мм, (h = 0,154);

γ – плотность осаждённого металла, г/см3, (γ = 7,8);

РК – плотность тока, А/дм2, (РК = 40);

с – электрохимический эквивалент, г/А*ч, (с = 1,042);

η – выход металла по току, (0,95).


, мин;

, ч.


7.4 Шлифование поверхности (окончательная обработка)

Принимаем поперечную подачу (глубина шлифования) h = 0,02/0,01 мм/об (черновое/чистовое шлифование) и окружную скорость детали соответственно V=20/2 м/мин.

Число проходов:


;

.

 мин;  мин;

=0,10+0,21+0,007+18/54=0,65, мин;

=2,07+0,21+0,15+18/54=2,76, мин.


8. Технологическая документация


К технологической документации относятся технологические карты, чертежи приспособлений, специального инструмента. Наиболее важным документом считается технологическая карта. Существуют три степени детализации описания технологических процессов: маршрутное, операционное и маршрутно-операционное. Соответственно применяют маршрутные и операционные технологические карты. В маршрутной карте делают описание всех технологических операций в последовательности их выполнения.

Операционная карта для механической обработки детали содержит данные об обрабатываемой детали, заготовке, номере и наименовании операций и переходов, применяемом оборудовании, приспособлениях, инструменте, режимах резанья, машинном и штучном времени, разряде работ. При операционном описании технологического процесса составляют полное описание всех технологических операций в последовательности их выполнения с указанием переходов и технологических режимов, и на каждую операцию разрабатывают технологическую карту и маршрутную карту. При маршрутно-операционном описании сокращенно указывают технологические операции в маршрутной карте в последовательности их выполнения с полным описанием отдельных, более важных операций в операционных картах.

Документы на технологические процессы ремонта изделий выполнены с учетом требований рекомендаций Р 50-60-88 "ЕСТД. Правила оформления документов на технологические процессы ремонта".


Заключение


В настоящее время в условиях авторемонтного производства все большее количество изношенных деталей восстанавливается осталиванием.

Видимые простота и доступность технологического процесса осталивания для рабочего персонала невысокой квалификации способствуют появлению большого количества различных рекомендаций, порой противоречивых, а часто необоснованных.

Прежде всего, следует помнить, что электролитическое железо не является по своим физико-механическим свойствам аналогом среднеуглеродистой закаленной стали, а представляет собой специфичный материал с характерными и присущими только ему свойствами.

При восстановлении изношенных поверхностей деталей не следует стремиться к получению высокой твердости покрытий электролитического железа, т. к. величина твердости покрытий электролитического железа не находится в прямой зависимости с их долговечностью. Повышению долговечности покрытий электролитического железа способствует только оптимальная величина их твердости, которая зависит от марки сопряженного материала и параметров электролиза.

В силу особенностей физико-механических свойств, присущих электролитическому железу, оптимальная чистота восстановленных поверхностей не совпадает с чистотой, заданной рабочими чертежами на изготовление этих деталей.

Температура простых хлористых электролитов осталивания не должна быть при восстановлении деталей ниже 70° С. В случае снижения температуры электролита за указанные пределы покрытия электролитического железа получаются не ровными, не плотными, с пропусками и раковинами.


Список литературы


1.                 Шишканов Е. А., Баранов Н. Ф. Разработка технологического процесса восстановления деталей машин: Методические указания для студентов инженерного факультета. – Киров: Вятская ГСХА, 2005 – 67с.

2.                 А. Н. Швецов Основы восстановления деталей осталиванием. – Омск.: Западно-Сибирское книжное издательство, 1973. – 144с.

3.                 Воловик Е. Л. Справочник по восстановлению деталей / Е. Л. Воловик. – М.: Колос, 1981. – 381с.

4.                 Капитальный ремонт автомобилей: Справочник / Л. В. Дехтеринский, Р. Е. Есенберлин, В. П. Апсин и др. / Под ред. Р. Е. Есенберлина. – М.: Транспорт, 1989. – 335с.

5.                 Надежность и ремонт машин / В. В. Курчаткин, Н. Ф. Тельнов, К. А. Ачкасов и др.; Под ред. В. В. Курчаткина. – М.: Колос, 2000. – 776с.


Приложение А


Техническая характеристика бесцентрово-шлифовального станка 3180


1.                 Наименьший и наибольший диаметр шлифования, мм - 5-75.

2.                 Диаметр шлифовального круга, мм:

3.                 Наибольшая ширина круга, мм – 150.

4.                 Число оборотов шлифовального круга, об/мин – 1200.

5.                 Наибольшее перемещение бабки ведущего круга, мм: а) без салазок – 80; б) с салазками – 100.

6.                 Наибольший угол поворота головки шпинделя ведущего круга, град. – 6.

7.                 Диаметр ведущего круга, мм: а) наименьший – 260; б) наибольший – 300.

8.                 Наибольшая ширина ведущего круга, мм – 150.

9.                 Число оборотов шпинделя ведущего круга, об/мин: а) при механическом приводе – 13; 16; 22; 29; 39; 52; 70; 94; 126; 166; 212; 294; б) при гидравлическом приводе (бесступенчатое регулирование) – 25-225.

10.            Мощность электродвигателя, кВт – 12.

11.            Габаритные размеры, мм – 2265*1650*1620.

12.            Масса станка, кг – 3250.


Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.