Рефераты. Расчет преобразователя для питания вспомогательных цепей электровоза






Расчет преобразователя для питания вспомогательных цепей электровоза

Министерство путей сообщения Российской Федерации Уральский государственный университет путей сообщения

Кафедра электрической тяги










Пояснительная записка

к курсовому проекту

Расчет преобразователя для питания вспомогательных цепей электровоза












Екатеринбург 2010


Содержание


1. Основные преимущества схемы питания вспомогательных цепей

2. Схема питания вспомогательных цепей и описание ее работы

3. Расчет вторичных цепей

3.1 Расчет вторичных ЭДС

3.2 Выбор вентилей вторичных цепей

3.3 Расчет величины индуктивностей сглаживающих реакторов

4. Выбор вентилей автономного инвертора

5. Расчет входного фильтра

6. Функциональная схема управления инвертором

Список литературы


Введение


Современный электрический подвижной состав (ЭПС) содержит разнообразные преобразователи, построенные на базе современных полупроводниковых приборов.

Совершенствуются схемы силовых, а также вспомогательных цепей ЭПС, в трех направлениях: создание более экономичных, более надежных и более удобных в эксплуатации преобразователей.

В настоящее время могут быть предложены следующие схемы питания вспомогательных цепей:

а)       непосредственно от контактной сети (современный подвижной состав постоянного тока);

б)       от вращающегося расщепителя фаз (современный подвижной состав переменного тока);

в)       от непосредственного преобразователя частоты (на электровозах переменного тока с асинхронными вспомогательными машинами);

г)  от трехфазного автономного инвертора (асинхронные машины на электровозах постоянного тока);

д)  от преобразователя «автономный однофазный инвертор трансформатор - управляемые выпрямители» (на электровозах постоянного тока).

Возможны другие схемы питания вспомогательных машин, не перечисленные выше.

В курсовом проекте выполнен расчет параметров основных элементов силовой цепи преобразователя «автономный однофазный инвертор – трансформатор – управляемые выпрямители» для электровоза постоянного тока с коллекторными вспомогательными машинами.


1. Основные преимущества схемы питания вспомогательных цепей


В данном курсовом проекте по дисциплине «Электронная техника и преобразователи» ставится задача рассчитать параметры основных элементов силовой цепи преобразователя «автономный однофазный инвертор -трансформатор - управляемые выпрямители» для электровоза постоянного тока с коллекторными вспомогательными машинами. Такая схема питания вспомогательных машин имеет следующие преимущества по сравнению с традиционной схемой:

а) меньшая установленная мощность вспомогательных машин (мотор – компрессора, мотор – вентилятора и др.) из-за отсутствия колебаний напряжения на них и, в частности, падение напряжения до минимальной величины, что и является причиной завышения мощности приблизительно на 15...20% у вспомогательных машин, устанавливаемых на современном ЭПС;

б) возможность установки стандартных машин общепромышленного назначения;

в) выбор машин на сравнительно низкое напряжение (220, 440 В) повышает надежность их работы, уменьшает габариты, понижает стоимость;

г)     улучшенные условия эксплуатации машин, связанные со стабильностью напряжения на них, так как ни колебания, ни броски напряжения на них практически не возможны из-за наличия входного и выходного фильтров преобразователя и управляемого выпрямителя, стабилизирующего выходное напряжение;

д) возможность автоматического пуска вспомогательных машин при стабилизации пускового тока, а также возможность регулирования скорости вращения мотор – вентилятора в функции нагрева тяговых двигателей.


2. Схема питания вспомогательных цепей и описание ее работы


Схема питания вспомогательных цепей постоянного тока приведена на рисунке 2.1. На этой схеме представлены:

1)     ХА -пантограф;

2)     разрядник;

3)     QS1 - разъединитель; необходим для проведения профилактических осмотров и ремонтов;

4)      QF1 - быстродействующий выключатель; защищает электрическую цепь, как тяговых двигателей, так и вспомогательных цепей от токов короткого замыкания и токов аварийной перегрузки;

5)      L1C1 - входной фильтр; необходим для питания преобразователей тяговых двигателей (импульсные преобразователи) и автономного инвертора вспомогательных цепей;

6)      автономный однофазный мостовой инвертор напряжения; построен на запираемых тиристорах (VS1...VS4) и обратных диодах (VDI...VD4),

7)      преобразует постоянное напряжение контактной сети в прямоугольное переменное напряжение;

7)       многообмоточный специальный трансформатор; работает на повышенной частоте и прямоугольном напряжении. На высокой частоте трансформаторы имеют повышенные потери в меди и стали. Из-за эффекта вытеснения тока и периферии проводника его эффективное сопротивление возрастает. Чтобы уменьшить эти потери, используют полые проводники или делают обмотку из фольги. Потери в стали на вихревые токи и перемагничивание также возрастают. Для борьбы с вихревыми токами применяют более тонкую сталь (толщиной 0,1 мм) с большим активным сопротивлением. Используются также специальные ферромагнитные материалы: феррит, альсифер. Для уменьшения потерь от перемагничивания выбирают материал с узкой петлей гистерезиса. При прямоугольном напряжении потери в стали несколько ниже (приблизительно на 30 %). Потери в стали зависят от амплитуды напряжения, а действующее значение напряжения при синусоидальном напряжении в  раз меньше. При прямоугольном напряжении амплитуда и действующее значение равны:


 (2.1)


8) первая вторичная обмотка; питает через управляемый выпрямитель якорь двигателя - компрессора.

9) QF2 - линейный контактор; отключается на период остановки двигателя. Установить выпрямителю угол  не всегда возможно, поэтому может наступить явление «ползучей скорости». При токах перегрузки, не превышающих аварийные величины, линейный контактор может разорвать дугу, если автомат не отключился. На ток короткого замыкания он не рассчитан.

10) QF3 - автомат постоянного тока; отключается при коротком замыкании и аварийной перегрузке;

11) сглаживающий реактор; сглаживает ток и напряжение для якоря двигателя;

12)     вторая вторичная обмотка; аналогична первой и питает двигатель вентилятора;

13)     третья вторичная обмотка; через управляемый выпрямитель питает обмотки возбуждения двигателей компрессора и вентилятора. Защита этих цепей осуществляется предохранителями (плавкими вставками);

14) четвертая вторичная обмотка; питает обмотки возбуждения тяговых двигателей в режиме рекуперативного торможения, а также в тяговом режиме;

15)     выпрямитель однофазный управляемый реверсивный нулевой;

16)   VD5, VD6 - светодиоды; показывают машинисту направление движения (вперед или назад);

17) пятая вторичная обмотка; через регулятор переменного тока питает другие вспомогательные цепи электровоза. Регулятор с помощью угла регулирования а стабилизирует выходное напряжение при колебаниях напряжения контактной сети;

18) L2C2 - выходные фильтры; необходимы для отфильтровки гармоник с частотой, отличной от 400 Гц;

19) напряжение 220 В частотой 400 Гц; используется для:

а)     питания цепей управления преобразователей;

б)     питания цепей освещения и отопления;

в)       питания собственных нужд машиниста (электрочайник, электроплита, кондиционер, холодильник и т. д.).


3. Расчет вспомогательных цепей


3.1 Расчет вторичных ЭДС

Среднее значение выпрямленного напряжения Udα для всех выпрямителей.

Среднее значение выпрямленного напряжения холостого хода можно определить, суммируя заштрихованные площадки согласно рисунку 3.1, при угле коммутации γ=0


 (3.1)


где  - амплитуда ЭДС вторичной обмотки, равная по величине действующему значению этой ЭДС (при прямоугольном, приложенном к первичной обмотке трансформатора, напряжении), В;

α - угол регулирования, рад.


Рисунок 3.1 – диаграмма напряжений и выпрямленного тока


При коммутации вентилей ток вторичной обмотки трансформатора должен изменить свое направление на противоположное под действием ЭДС вторичной обмотки .

По второму закону Кирхгофа,


 (3.2)


где  - индуктивность вторичной и первичной обмоток трансформатора, связанные потоками рассеяния соответствующих обмоток;

 - индуктивное сопротивление вторичной и приведенной к вторичной первичной обмоток трансформатора, Ом;

 - текущее значение угла.

Найденное из формулы (3.2) путем интегрирования значение тока


, (3.3)


где С – постоянная интегрирования.

Постоянная интегрирования может быть найдена из начальных условий:

при ; ;


. (3.4)


Таким образом, окончательно имеем


.  (3.5)


Поскольку =const в течение полупериода, не имеет значения точка отсчета угла. Пусть в начале коммутации , а в конце коммутации . При этом ток достигнет значения


.  (3.6)


Отсюда


. (3.7)


Среднее значение падения напряжения, связанное с коммутацией вентилей, определится из площади прямоугольника, приведенного на рисунке 3.1.


. (3.8)


Учитывая формулы (3.7) и (3.8), имеем


 .  (3.9)


Выражение , имеет такое же значение, как и для выпрямителей, питающихся синусоидальным напряжением.


. (3.10)


Выражения для определения ЭДС вторичных обмоток

ЭДС вторичных обмоток для питания мотор-компрессора и мотор – вентилятора. Номинальное напряжение на двигателе определяется выбранным типом двигателя. Наиболее подходят двигатели с напряжением 220 и 440 В. Номинальное напряжение  соответствует углу регулирования α=0 и номинальному току . В курсовом проекте трансформатор не рассчитывается, а значит, величина сопротивления  неизвестна, поэтому примем падение напряжения, связанное с коммутацией, равным 7 % от напряжения холостого хода.

Поэтому имеем


. (3.11)


Откуда

.  (3.12)


Прежде чем получить UdH, необходимо выбрать двигатели.

Рассчитаем мощность двигателя компрессора:


, (в рад) (3.13)

Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.