Рефераты. Процессы смесеобразования






3.       Возможность повышения степени сжатия на 0,5–2 единицы при одинаковом октановом числе топлива в результате меньшего подогрева свежего заряда на впуске, более равномерного распределения топлива по цилиндрам.

4.       Повышение энергетических показателей (Ni , Ne и др.) на 3–25 %.

5.       Улучшение приемистости двигателя и более легкий его пуск.

Рассмотрим процессы смесеобразования при центральном впрыскивании аналогично протеканию этих процессов в карбюраторном двигателе и отметим основные отличия между этими процессами.

Распыливание топлива. Системы с впрыскиванием осуществляют подачу топлива под повышенным давлением, как обычно, во впускной трубопровод (центральное впрыскивание) или впускные каналы в головке цилиндров (распределенное впрыскивание) (рис. 1б, в).

Для систем центрального и распределенного впрыскивания кроме перечисленных параметров мелкость распыливания зависит также от давления впрыскивания, формы распыливающих отверстий форсунки и скорости течения бензина в них. В этих системах наибольшее применение получили электромагнитные форсунки, к которым топливо подводится под давлением 0,15¸0,4 МПа, что обеспечивает получение капель со средним диаметром 50¸400 мкм, в зависимости от типа форсунок (струйная, штифтовая или центробежная). При карбюрации этот диаметр составляет до 500 мкм.

Образование и движение пленки топлива. Количество пленки, образующейся при впрыскивании бензина, зависит от места установки форсунки, дальнобойности струи, мелкости распыливания, а при распределенном впрыскивании в каждый цилиндр – от момента его начала. Практика показывает, что при любом способе организации впрыскивания масса пленки составляет до 60...80 % от общего количества подаваемого топлива.

Испарение топлива. Особенно интенсивно испаряется пленка с поверхности впускного клапана. Однако продолжительность этого испарения невелика, поэтому при распределенном впрыскивании на тарелку впускного клапана и работе двигателя с полной топливоподачей до поступления в цилиндр испаряется лишь 30–50 % цикловой дозы топлива.

При распределенном впрыскивании на стенки впускного канала увеличивается время испарения из-за малой скорости движения пленки, и доля испарившегося топлива возрастает до 50–70 %. Чем выше частота вращения, тем меньше продолжительность испарения, а значит, уменьшается и доля испарившегося бензина.

Подогрев впускного трубопровода при распределенном впрыскивании не целесообразен, т.к. он не может заметно улучшить смесеобразование.

Неравномерность состава смеси по цилиндрам. У двигателей с распределенным впрыскиванием неравномерность состава смеси по цилиндрам зависит от качества изготовления (идентичности) форсунок и дозы впрыскиваемого топлива. Обычно при распределенном впрыскивании неравномерность состава смеси невелика. Наибольшее ее значение имеет место при минимальных цикловых дозах (в частности, на режиме холостого хода) и может достигать ±4 %. При работе двигателя на полной нагрузке неравномерность состава смеси не превышает ±1,5 %.


1.3 Особенности смесеобразования в газовых двигателях


При внешнем смесеобразовании качество смеси зависит от температуры кипения и коэффициента диффузии газа. Поэтому при работе на газовом топливе и внешнем смесеобразовании обеспечивается формирование практически однородной горючей смеси и исключается образование жидкой пленки на поверхностях впускного тракта. Для газовых двигателей подогрев впускного трубопровода не требуется.

Газовоздушная смесь распределяется по цилиндрам равномернее, чем смесь с жидким топливом. Внутреннее смесеобразование применяется для немногих типов двухтактных, а также четырехтактных стационарных газовых двигателей. Качество смесеобразования при этом хуже, чем при внешнем смесеобразовании, но исключаются потери газа с продувкой цилиндров.



2. Смесеобразование в дизелях


Смесеобразование в дизельных двигателях осуществляется в конце такта сжатия и начале такта расширения. Процесс продолжается короткий промежуток времени, соответствующий 20–60° поворота коленчатого вала. Этот процесс в дизеле имеет следующие особенности:

–           смесеобразование протекает внутри цилиндра и в основном осуществляется в процессе впрыскивания топлива;

–           по сравнению с карбюраторным двигателем продолжительность смесеобразования в несколько раз меньше;

–           горючая смесь, приготовленная в условиях ограниченного времени, характеризуется большой неоднородностью, т.е. неравномерным распределением топлива по объему камеры сгорания. Наряду с зонами высокой концентрации топлива (с малыми значениями локального (местного) коэффициента избытка воздуха), имеются зоны с малой концентрацией топлива (с большими значениями α). Это обстоятельство предопределяет необходимость сжигания топлива в цилиндрах дизелей при относительно большом суммарном коэффициенте избытка воздуха a > 1,2.

Поэтому в отличие от карбюраторного двигателя, имеющего пределы воспламеняемости горючей смеси, в дизеле α не характеризует условия воспламенения топлива. Воспламенение в дизеле практически возможно при любом суммарном значении α, т.к. состав смеси в различных зонах камеры сгорания (КС) изменяется в широком диапазоне. От нуля (например, в жидкой фазе капель топлива) до бесконечности ¾ вне капли, где нет топлива.



2.1 Особенности смесеобразования


Процессы смесеобразования в дизелях включают в себя распыливание топлива и развитие топливного факела, его прогрев, испарение топливных паров и смешивание их с воздухом.

Распыливание топлива. Впрыскивание и распыливание топлива в цилиндре дизеля осуществляется с помощью специальных устройств – различных типов форсунок, имеющих, в частности, разное число сопловых отверстий распылителя.

Распыливание струи на мелкие капли резко увеличивает поверхность дозы жидкости. Отношение поверхностей образовавшегося множества капель к единичной капле той же массы примерно равно корню кубическому из количества капель. Общее количество капель в результате распыливания достигает (0,5-20)·106, что дает увеличение поверхности приблизительно в 80–270 раз. Последнее обеспечивает быстрое протекание процессов тепло- и массообмена между каплями и воздухом в камере сгорания, имеющим высокую температуру до 2000 °C и более. Размеры частиц, обеспечивающих быстрое сгорание в дизеле, составляют 5¸40 мкм.



Для одновременной оценки мелкости и однородности распыливания пользуются характеристикой распыливания, представляющей собой зависимость между диаметрами капель dк и их относительным содержанием Ω – отношением объема капель, имеющих диаметры от минимального до данного, к объему всех капель. Зависимость Ω = f(dк) приведена на рис. 3. Чем круче и ближе к оси ординат располагается суммарная характеристика распыливания, тем мельче и однороднее распылено топливо. Вместо указанных объемов по оси ординат можно откладывать относительную массу капель.

Развитие топливного факела. Первичный распад струи (на относительно крупные частицы) происходит посредством турбулентных возмущений, возникающих при течении топлива через сопловое отверстие, а также упругого расширения топлива при выходе из устья сопла. В последующем крупные частицы разбиваются при полете на более мелкие посредством сил аэродинамического сопротивления среды.

Форма факела (струи) характеризуется его длиной Lст, углом конусности γст и шириной Вст (рис. 4). Формирование факела происходит постепенно по мере развития процесса впрыскивания. Длина факела Lст увеличивается вследствие непрерывного "выдвижения" новых частиц топлива к его вершине. Скорость ст продвижения вершины факела при увеличении сопротивления среды и уменьшении кинетической энергии частиц уменьшается, а ширина факела Вст увеличивается. Угол конусности Вст при цилиндрической форме соплового отверстия распылителя составляет Вст = 12–20°. На рис. 5 представлено изменение по времени Lст, ст, Вст.




Топливо, введенное в цилиндр в виде факелов, распределяется в воздушном заряде неравномерно, т.к. число факелов, определяемое конструкцией распылителя, ограничено. Другой причиной неравномерного распределения топлива в камере сгорания является неоднородная структура самих факелов.

Обычно в факеле (рис. 6) различают три зоны: сердцевину, среднюю часть и оболочку. Сердцевина состоит из крупных частиц топлива, которые имеют наибольшую скорость движения. Средняя часть факела содержит большое количество мелких частиц, образовавшихся при дроблении передних частиц сердцевины силами аэродинамического сопротивления. Распыленные и потерявшие запас кинетической энергии частицы топлива оттесняются и продолжают движение лишь за счет потока воздуха, увлекаемого попутно факелом. В оболочке находятся наиболее мелкие частицы, имеющие минимальную скорость движения.


Влияние на параметры распыливания топлива и развитие топливного факела оказывают конструкция распылителя, давление впрыскивания, состояние среды, в которую впрыскивается топливо, свойства самого топлива.

Распылители с цилиндрическими сопловыми отверстиями (рис. 7а) могут быть многодырчатыми и однодырчатыми, открытыми и закрытыми (с запорной иглой). Штифтовые распылители (рис. 7б) выполняются только однодырчатыми, закрытого типа. Распылители со встречными струями и с винтовыми завихрителями могут быть только открытыми (рис. 7в, г). Цилиндрические сопловые отверстия обеспечивают получение сравнительно компактных факелов с малыми конусами расширения и большой пробивной способностью.


Рис. 7. Типы распылителей форсунок: а) цилиндрические; б) штифтовые; в) со встречными струями; г) с завихрителями


С увеличением диаметра отверстия d0 соплового отверстия распылителя глубина проникновения факела возрастает. Распылитель открытого типа без запирающейся иглы характеризуется менее качественным распыливанием, чем закрытый, и для впрыскивания топлива в КС дизелей не применяется. У штифтовых распылителей факел имеет форму полого конуса. Это улучшает распределение топлива в воздушной среде, но уменьшает пробивную способность факела.

С увеличением давления впрыскивания длина факела возрастает, тонкость и равномерность распыливания улучшается. При повышении нагрузки двигателя и частоты вращения n улучшается качество распыливания.

Состояние среды (рабочего тела) внутри цилиндра дизеля существенно влияет на процесс смесеобразования. С повышением давления в КС, обычно в пределах 2,5¸5,0 МПа, увеличивается сопротивление продвижению факела, что приводит к уменьшению его длины. При этом качество распыливания изменяется незначительно. Возрастание температуры воздуха в пределах 750…1000 К приводит к снижению длины факела вследствие более интенсивного испарения частиц топлива. Движение среды в цилиндре положительно влияет на равномерность распределения топлива в факеле и в объеме камеры сгорания. Повышение температуры топлива приводит к уменьшению длины факела и более тонкому распыливанию, что обусловлено снижением вязкости нагретого топлива. Более тяжелые топлива, имеющие большие плотность и вязкость, естественно, при прочих одинаковых условиях распыливаются хуже, чем легкие автотракторные топлива.

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.