Рефераты. Застосування наночасток для лікування тварин






Об'єктами санітарно-паразитологічного дослідження у місці утримання собак були визначені: ґрунт, зіскріби із металевих сіток, решіток та інвентарю для прибирання вольєрів, мисок для годівлі та напування.

Проби відбирали з усієї площі вольєру за методом конверту. Шпателем з поверхні ґрунту відбирали 5 - 10 наважок по 10 - 20 г кожна. Глибина забору становила 1 - 3 см. Після ретельного перемішування цих наважок формували середню пробу ґрунту масою 100-200 гр. Із кожного вольєра було відібрано по 5 проб ґрунту.

У лабораторні стакани ємністю 250 см3 вміщували 25 г ґрунту, який заливали 3 %-вим розчином NaOH у співвідношенні 1:2. Вміст лабораторних стаканів ретельно перемішували і відстоювали протягом 20 - 30 хв. Надосадову рідину зливали, а осад промивали до отримання прозорої надосадової рідини. До осаду в лабораторний стакан додавали 150 см3 флотаційного розчину (натрію нітрату), ретельно перемішували та залишали на 20-30 хв. Утворену поверхневу плівку переносили на предметне скло за допомогою бактеріологічної петлі та розглядали під малим збільшенням мікроскопа.

Дослідження ґрунту на наявність личинок гельмінтів проводили за методом М.П. Гнєдіної. Вільноживучих нематод диференціювали за методом Корта.

За результатами ово- та ларвоскопії встановлено обсіменіння зародками паразитів об'єктів довкілля. У ґрунті виявлено життєздатні інвазійні елементи у 83,3% випадків, у зіскріби із сіток, ґрат і вольєрів та інвентарю, який використовують при догляді за тваринами, - 16,6, зародки паразитів виявлено у 50 % досліджених проб.

У пробах ґрунту було виявлено яйця токсокар в середньому 2,4 екз./г, токсаскарисів - 0,6, яйця та личинки анкілостом - 0,3, ехінококів - 0,2 екз./г.

У змивах із мисок для годування та напування собак були виявлені яйця токсокар у кількості в середньому 3 яйця, токсокарисів - 1,5 яєць, 1 личинка анкілостом. Яєць ехінококів виявлено не було.

Перед проведенням дезінвазії вольєри були звільнені від тварин. Проведено механічне очищення території; посуд, совки та віники відмочували у мильній воді та очищали.

Один вольєр (дослідний) обробляли колоїдом аніоноподібних наноаквахелатів магнію. Вміст металу становив 200 мг в 1 дм3. Обробку проводили у безвітряну, суху погоду, методом розпилювання із розрахунку 1 л на 1 м2. Експозиція становила 5 діб. По закінченню терміну експозиції тварин перевели у вольєри.

Другий вольєр (контроль) був зрошений водою.

Для контролю дезінвазії відбір проб проводили двічі. Перший раз після закінчення терміну експозиції - через 5 діб; другий - через 10 діб від початку експерименту, тобто після п'ятиденного перебування собак у вольєрі, після дезінвазії.

Результати досліджень наведено у табл. 10.

Таблиця 10

Паразитарне забруднення об'єктів довкілля у вольєрах до та після дезінвазії

Час проведення досліду

Виявлення життєздатних зародків паразитів

у об'єктах довкілля, %

ґрунт

зіскреби

змиви

ґрунт

зіскреби

змиви

дослід

контроль

До дезінвазії

73,3

8,3

100

66,7

16,7

100

Через 5 діб після дезінвазії

0

0

0

53,3

0

0

Через 10 діб після дезінвазії

6,7

0

77,8

73,3

0

88,9

Як видно із табл. 10 протягом 5 діб після проведення дезінвазії у дослідних групах не було виявлено жодного життєздатного зародка паразита.

Після п'ятиденної експозиції у пробах ґрунту дослідного вольєру були виявлені нежиттєздатні яйця токсокар і токсаскарисів у середньому 0,3 та 0,1 екз./г.

У пробах ґрунту контрольного вольєру виявлено життєздатні яйця токсокар в середньому 1,7 екз./г, токсаскарисів - 0,4, личинки анкілостом - 0,1, ехінококів - 0,1 екз./г.

У зіскрібках із сіток і ґрат вольєра і на поверхні посуду та інвентарю обох вольєрів зародків нематод не виявлено.

Після п'ятиденного перебування тварин у вольєрах, у пробах ґрунту контрольної групи виявлено яйця токсокар, токсаскарисів, анкілостом та ехінококів в середньому 1,9; 0,6; 0,2; 0,2 екз./г, відповідно.

У дослідних групах виявлено 0,03 екз./г життєздатних яєць токсокар та 0,04 екз./г яєць токсаскарисів.

У змивах із посуду зафіксовано інтенсивність контамінації збудників паразитів у таких же кількостях, як і до обробки.

У зіскрібках із сіток і ґрат у контрольному та дослідному вольєрі яєць чи личинок паразитів виявлено не було.

Наші спостереження показали, що посуд, який використовують для годівлі тварин є одним із важливих факторів передачі інвазії. Його дезінвазія не представляє труднощів. Єдиною умовою є його регулярне миття.

Отже, наночастки магнію здатні ефективно знезаражувати інвазійні елементи, які постійно надходять у довкілля разом із випорожненнями тварин.

Переважна більшість збудників паразитарних хвороб виділяється у довкілля із екскрементами тварин і людини. Тому, місцем накопичення найбільшої кількості інвазійних елементів у тваринницьких господарствах вважають гній і стічні води.

Видалення, знезараження, зберігання, транспортування та використання гною і стоків повинні здійснюватись із урахуванням вимог охорони довкілля від забруднень і виключення поширення збудників інфекційних та інвазійних хвороб.

8. Застосуванням наночасток металів для дезінвазії каналізаційних стоків

Для знезараження стічних вод ТОВ «Наноматеріали і нанотехнології» було розроблено поліметалеві аквананохелати - структуровані агломерати наночасток різних розмірів і різнорідних металів. На поверхні наночасток із відмінними розмірами виникає електричний розряд, пропорційний їхньому розміру. Електрозаряджені наночастки бактерицидних металів (Mg, Zn, Cu, Ag, Pd, Pt, Au, Ir, Sn та Sb) отримані шляхом диспергування металевих гранул імпульсами електричного струму у воді, де вони накопичуються, утворюючи колоїдний розчин. При цьому наночастки знаходяться між собою в електричному контакті.

Використання наночасток суміші металів підсилює|посилювати| біоцидну дію препарату та розширює спектр його дії за рахунок синергічної дії металів.

Електричний потенціал на поверхні наночасток досягає декількох вольт. При розмірі наночасток 100 нм напруженість електричного поля в ближній зоні наночасток сягає 105 В/см, що значно (на три порядки) перевищує пороговий рівень дезінвазійної здатності електричного поля і призводить до знищення яєць і личинок гельмінтів.

Робота включала три необхідно взаємопов'язаних етапи, із яких два перших можна розглядати як підготовчі. Зокрема, на першому із застосуванням загальноприйнятих гельмінтоовоскопічних методів були отримані життєздатні яйця свинячої аскариди.

На другому етапі було налагоджене лабораторне культивування цих яєць та їхнє диференціювання на життєздатні й нежиттєздатні, незрілі та зрілі.

Третій, основний, етап роботи полягав у створенні експериментальної моделі шляхом компанування інвазійного матеріалу, сирого осаду стічних вод тваринницької ферми та наногальванічних елементів, утворених наночастками біоцидних металів. При цьому напруга електричного поля в ближній зоні електричнозаряджених наночасток сягала 100 000 В/см, а кількість самих наночасток в середовищі становила 1010 - 1012 часток/л. За рахунок броунівського руху наночастки знаходились у безпосередній близькості від яєць гельмінтів, що надзвичайно підвищило ефективність дії препарату.

В експерименті були задіяні 6 дослідних і 2 контрольних групи. У вісім ємностей заливали по 1 л сирого осаду стічних вод тваринницької ферми. Потім до кожної з них вносили по 50 життєздатних яєць свинячої аскариди: у 3 дослідні та 1 контрольну групу - не інвазійні, а в інші 3 дослідні та 1 контрольну - інвазійні яйця нематоди (з личинкою всередині).

Електричнозаряджені наночастки бактерицидних металів (Mg, Zn,Cu, Ag, Pd, Pt, Au, Ir, Sn, Sb) були одержані в лабораторних умовах ерозійно-вибуховим способом за технологією ТОВ «Наноматеріали і нанотехнології».| Загальний вміст металів у нанорідині становив близько 100 мг/дм3.

Нанорідину вносили з розрахунку 500 мл, 1000 і 3000 мл на 1 м3 осаду. Під час експерименту і перед відбором проб дослідні суміші перемішували. Час експозиції дорівнював 6 год, 12 і 24 год.

Після експозиції яйця аскарид вилучали із дослідних сумішей. Для цього до ємності із стічними водами додавали 0,5 г/см3 міді сульфат і ретельно перемішували. Через 40-50 хв після утворення пластівців і просвітлення стічної води надосадову рідину видаляли піпеткою. Осад переносили у центрифужні пробірки та центрифугували протягом 3 хв при 1000 об/хв. Надосадову рідину видаляли, а до осаду додавали 3 см3 3 %-вого розчину соляної кислоти, під дією якої пластівці розчинялися. Після повторного центрифугування та видалення надосадової рідини у пробірки вносили насичений розчин натрію нітрату до рівня на 2-3 мм нижче від її країв. Після годинної експозиції верхню плівку досліджували на наявність яєць гельмінтів і визначали їхню життєздатність.

Яйця нематод двічі відмивали у дистильованій воді з використанням центрифуги (при 1,5 тис. об./хв, протягом 5 хв) та переглядали у бактеріологічних чашках при малому збільшенні мікроскопа.

Для контролю фізіологічної життєздатності яйця культивували в бактеріологічних чашках із фізіологічним розчином у термостаті при температурі 28 ?С протягом 60 діб. Двічі на тиждень яйця аскарид переглядали під малим і великим збільшеннями мікроскопа. При цьому виявляли деформовані та мертві яйця (розрив оболонки, її прогинання, стан плазми)(табл. 11).

Таблиця 11

Овоцидна ефективність електрично заряджених наночасток біцидних металів на яйця Ascaris suum

Доза нано-речовини,

мл/м3

Експозиція, год

Неінвзійні яйця

Інвазійні яйця

кількість яєць, які не досягли інвазійної стадії, %

кількість життєздат-них яєць, %

кількість нежиттє-здатних яєць, %

кількість життє-здатних яєць, %

без роз-витку, %

з розвит-ком, %

500

6

62,9

31,3

5,8

65,7

34,3

12

78,6

19,2

2,2

70,1

29,9

24

81,8

16,5

1,7

79,2

20,8

1000

6

73,4

25,4

1,2

68,6

31,4

12

80,8

18,6

0,6

75,6

24,4

24

94,2

5,8

-

80,4

19,6

3000

6

86,4

12,6

1,0

83,9

16,1

12

92,3

7,7

-

90,4

9,6

24

96,7

3,3

-

93,6

6,4

Контроль

3,7

-

96,3

1,8

98,2

Як зазначено в таблиці 11, ступінь овоцидного ефекту колоїду наночасток біоцидних металів прямо залежить від концентрації реагенту й тривалості експозиції. Нанорозчин ефективніше діє на яйця аскариди свиней, які ще не досягли інвазійної стадії. Крім того, під час експерименту із неінвазованими яйцями нематод серед них відмічали фізіологічне незавершення розвитку в середньому у 15,9 % випадків.

Найвищий, 100 %-й овоцидний ефект мав місце при дозуванні наноречовини 3000 мл/м3 та експозиції 12 і 24 год, а також при використанні колоїдного розчину у концентрації 1000 мл/м3 з експозицією 24 год. Найменшу овоцидну активність мали аквахелати, застосовані у концентрації 500 мл на 1 м3 осаду з експозицією до 6 год - 94,2 %. У контрольній групі 96,3 % неінвазійних яєць розвинулися до інвазійної стадії.

Дещо нижчу ефективність проявляє нанобіокомпозит наночасток металів при дії на зрілі яйця A. suum. Задовільний овоцидний ефект (65,7 -79,2 %) дає застосування наноречовини у дозі 500 мл/ м3 при експозиції відповідно від 6 до 24 год.

При застосуванні 3000 мл нанорідини на 1 м3 стічних вод протягом 24 год вдається досягти майже 93,6 %, а при 12 годинній експозиції - 90,4 % елімінації паразитів, що є високоефективним проявом овоцидної дії. У контрольній групі життєздатність нематод зберігалася на рівні 98,2 %.

Висока овоцидна ефективність пропонованого способу знезараження каналізаційних стоків від збудника аскаридозу, відносна простота й доступність застосування дозволяють рекомендувати його до використання в практиці комунального та сільського господарств. Застосування даного методу дезінвазії дозволить оперативно вирішити проблеми дегельмінтизації та утилізації осаду стічних вод без застосування екологічно небезпечних технологій.

Гній і стічні води часто використовують в якості органічних добрив при вирощуванні сільськогосподарських культур. Неякісне проведення їхньої дезінвазії та порушення санітарно-гігієнічних режимів при заготівлі, транспортуванні й реалізації овочів і фруктів може створювати умови для поширення інвазійних хвороб і зараження ними людини.

Список літератури

1. Семенов Б.С. Болезни пальцев у крупного рогатого скота в промышленных комплексах. - Л.: Колос, 1981. - С. 62 - 88.

2. Черняк С.В. Зміни синовіоцитограми, функціональної активності нейтрофілів і лімфоцитів при асептичних артритах у телят (клініко-експериментальні дослідження): Автореф. дис… канд. вет. наук. - Біла Церква, 1999. - 19 с.

3. Белов А.Д., Лукьяновский В.А. Общая ветеринарная хирургия. - М.: Агропромиздат, 1990. - С. 497 - 552.

4. Загальна ветеринарна хірургія / І.С.Панько, В.М. Власенко, В.Й. Іздепський та ін. - Біла Церква: Вид - воБЦДАУ, 1999. - 207 с.

5. Бурденюк В.Ф., Кузнецов Г.С. Ветеринарная ортопедия. - Л.: Колос, 1976. - С.157 - 168.

6. Клінічна діагностика внутрішніх хороб тварин (ред. В.І. Левченко). - Біла Церква: Вид - во БЦДАУ, 2004. - 608 с.

7. Варданян А.В. Влияние условий содержания на качество копытцевого рога и заболеваемость копытец у коров в молочных комплексах: Автореф. дис… канд. вет. наук. - М., 1984. - 16 с.

8. Хомин Н.М. Біохімічні та біофізичні показники копитцевого рогу корів залежно від рівня забезпеченості мінеральними речовинами // Наук. Вісник Національного аграр. ун - ту. - К., 2004. - Вип. 74. - С. 318 - 322.

9. Хомин Н.М. Біофізичні властивості копитцевого рогу у корів у нормі та при асептичному пододерматиті // Вет. медицина України. - 2004. - № 4. - С.41 - 42.

10. Кулінич С.М. Методи лабораторної діагностики грибкових уражень копитець у корів // Збірник наукових праць Луганського аграрного університету: Ветеринарні науки. - 2007. - № 78/101. - С. 328 - 331.

11. Нанотехнологія у ветеринарній медицині. Посіб. для студ. аграр. закл. освіти І - ІV рівней акредитації / В.Б. Борисович, Б.В. Борисович, В.Г. Каплуненко та ін. - К.: ТОВ «Наноматеріали і нанотехнології», 2009. - 232 с.

12. Волошина Н.О. Петренко О.Ф., Каплуненко В.Г. та ін. Екологічні антисептичні засоби профілактики у свинарстві // Вісник Білоцерківського державного аграрного університету. - Біла Церква, 2008. - Вип. 57. - С. 33-36.

13. Пат. 38138 Україна, МПК А 61 L 2/16. Нанорідина для знешкодження у довкіллі збудників інвазійних хвороб тварин / Волошина Н.О., Каплуненко В.Г., Косінов М. В.; власник Волошина Н.О., Каплуненко В.Г., Косінов М. В. - № 2008 08955; заявл. 08.07.08; опубл. 25.12.08. Бюл. № 24.

14. Волошина Н.О., Гоголь А.В., Сиченко Т.В. Дослідження дії наноматеріалу «шумерське срібло» на збудник аскарозу свиней // Ветеринарна біотехнологія. Бюлетень. - 2008. - №13 (2). - С. 67-70.

15. Патент України на корисну модель № 29854. Висококоординаційний аніоноподібний аквананокомплекс / Каплуненко В.Г., Косинов М.В. - опубл. 25.01.08, Бюл. №2.

16. Романенко Н.А., Падченко И.К., Чебышев Н.В. Санитарная паразитология: (Руководство для врачей). - М.: Медицина, 2000. - 342 с.

Страницы: 1, 2, 3, 4, 5, 6, 7



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.