Рефераты. Выращивание картофеля






Выращивание картофеля

3

Общая характеристика работы

Прошло более десяти лет после так называемого реформирования сельского хозяйства.

Анализ материалов выборочного обследования свидетельствует о том, что, несмотря на ряд негативных факторов, сопровождающих предпринимательскую деятельность, развитие различных форм малого предпринимательства на селе, включая крестьянские фермерские хозяйства, активизируется

Актуальные темы.

Картофель в настоящее время и на перспективу будет одной из основных культур, возделываемых в России на продовольственные и технические цели.

В настоящее время существует значительное количество крестьянских и фермерских хозяйств с объёмами производства картофеля 30…500 тонн.

Основная проблема производства этой культуры сравнительно низкая экономическая эффективность, связанная с большими трудозатратами и порчей продукции.

Использование комплексных технологических линий высокой производительности, типа КСП-15В и КСП-25 не всегда может нужный результат и обеспечить эффективное применение в различных производственных условиях.

На всех этапах развития конструкций машин для послеуборочной доработки вороха корнеклубнеплодов в центре внимания всегда стоял вопрос дальнейшего и эффективного улучшения работы сепарирующе-калибрующих рабочих органов, которые должны отсеивать и отделить от клубней картофеля не менее 33% различных примесей при точности разделения на фракции не ниже 30% и общем количестве повреждённого картофеля не более 3% исходного объёма. Не смотря на то, что и в нашей стране и за рубежом созданы работоспособные картофелесортировальные комплексы и линии, тем не менее проблему сепарации примесей и калибрования картофеля на фракции нельзя считать окончательно решённой. Это прежде всего объясняется тем, что поступающий после уборки ворох картофеля в конкретных условиях производства может содержать до 60% почвенных и растительных примесей с влажностью до 30% и обязательно состав клубней разной массы. Как показывают результаты исследований, качество обработки вороха картофеля на отечественном оборудовании КСП-25 и КСП-15В в конкретных условиях хозяйств не соответствует предъявляемым требованиям.

При влажности вороха более 20% и засорённости примесями до 40% происходит налипание почвы и забивание рабочей поверхности дискового сепаратора, уменьшение размеров калибрующих отверстий и защемление клубней роликами.

Отделители с электронными устройствами ещё не нашли широкого применения в условиях крестьянских и фермерских хозяйств, так как они дороги, сложны по конструкции, небезопасны, требуют высококвалифицированного обслуживания, не надёжны в работе, несмотря на то, что они теоретически способны полностью разделить ворох корнеклубнеплодов.

Различные способы и соответствующие технические решения, направленные на улучшение сепарации примесей и калибрования картофеля, приведёт к усложнению конструкции, увеличению количества технологических операций и к увеличению повреждения клубней картофеля вследствие увеличения времени контакта клубней с рабочей поверхностью.

Настоящая работа направлена на устранение вышеуказанных недостатков и улучшение эффективности процесса сепарации примесей и калибрования картофеля на фракции с использованием вибрационного воздействия.

Цель работы.

Целью работы является повышение точности калибрования картофеля при снижение повреждения клубней и материало-энергоемкости устройства путём определения рациональных параметров, вибрации роторно-пальцевой калибрующей поверхности.

Объекты и место исследований

Объектом исследований является:

- физико-механические свойства клубней картофеля;

- процесс сортирования клубней вибрационной роторно-пальцевой поверхностью;

- универсальный сепарирующе-калибрующий модуль с вибрирующей роторно-пальцевой поверхностью.

Исследования проводились в картофелехранилищах колхоза «Маяк» Перемышльского района Калужской области.

Предмет исследований.

Параметры и режимы работы экспериментального сепарирующе-калибрующего модуля влияющие на точность калибрования клубней.

Методы исследований.

Теоретические исследования проводились с использованием законов и методов классической механики и математики. Экспериментальные исследования проводились в соответствии с действующими стандартами в лабораторных и полевых условиях.

Научная новизна работы составляют:

- зависимости динамики взаимодействия роторов с клубнями картофеля от параметров вибрации;

- аналитические зависимости влияния основных параметров виброротационной поверхности на качество калибрования клубней;

- математическая модель рабочего процесса в виде уравнения регрессии, связывающая точность калибрования клубней с определяющими факторами процесса.

Практическая ценность. По результатам исследований разработан новый сепарирующее-калибрующий модуль с вибрирующей роторно-пальцевой поверхностью, позволяющий существенно улучшить качество разделения картофеля на фракции и уменьшить повреждения клубней. Новый виброротационный сепарирующе-калибрующий модуль имеет существенные преимущества по сравнению с широко применяющимися в настоящее время в картофелесортировальных пунктах и линиях роликовыми и дисковыми рабочими поверхности. Кроме технологических преимуществ виброротационный сепарирующее-калибрующий модуль позволяет улучшить конструктивные параметры картофелесортировочных машин за счёт уменьшения габаритных размеров и сокращения времени взаимодействия клубней с рабочими органами. Обоснована экономическая эффективность нового вибро-ротационного сепарирующе-калибрующего модуля.

Методика теоретических исследований и обоснования параметров виброротационного сепарирующе-калибрующего рабочего модуля может быть использована и в других сельхозмашинах (картофелекопателях, машин для послеуборочной доработки моркови и свеклы (столовых корнеплодов).

Апробация работы. Основные положения диссертации доложены на региональной научно-технической конференции (Калуга 2002), РНТК (Калуга 2003), Прогрессивные технологии конструкции и системы в приборо-и машиностроении (Москва 2004), РНТК (2003 Брянск).

Содержание работы

Во введении обоснована актуальность темы, указана цель настоящей работы, изложены основные положения, которые выносятся на защиту.

В первой главе «Состояние вопроса и задачи исследования» дается обзор способов и конструкций существующих машин для сепарации примесей и калибрования картофеля, выявлены их преимущества и недостатки, дана классификация рабочих органов ротационного типа. В результате анализа конструкций и процессов существующих картофелесортировальных машин (роликовые, вальцевые и дисковые) выявлено, что обладая простотой конструкции и высокой удельной производительностью они не обеспечивают существенного снижения повреждений картофеля вследствие интенсивного динамического взаимодействия клубней с рабочими органами.

Вопросам сепарации почвы и калиброванию картофеля на картофелесортировальных машинах посвящены работы В.П. Горячкина, Н.Н. Колчина, Н.И. Верещагина, А.А. Сорокина, П.М. Власенко и других ученых. На преимущества ротационных и кулачковых сепараторов при работе на тяжелых суглинистых почвах повышенной влажности указывают исследования Я.И. Верменка, Б.П. Шабельника, Н.В. Шабурова, И.Н. Скурыгина, С.С. Остроумова.

В результате анализа установлено, что для повышения эффективности процесса калибрования клубней, сепарации почвы и снижения повреждений картофеля одним из перспективных направлений является применение вибрирующих роторно-пальцевых рабочих органов, обеспечивающих более быстрое направленное ориентирование клубней в калибрующие отверстия при отсутствии повреждений. В связи с вышесказанным необходимо исследовать и обосновать параметры и режимы работы вибрирующей роторно-пальцевой сепарирующе-калибрующей поверхности.

Основные задачи исследований:

1. Исследовать перемещение и ориентацию клубней картофеля при сложном виброкинематическом режиме взаимодействия с роторно-пальцевой поверхностью.

2. Провести анализ конструкций и процессов сепарирующе-калибрующих устройств.

3. Обосновать параметры конструкции универсальной вибрационной роторно-пальцевой поверхности.

4. Провести теоретические исследования по определению взаимодействия и направленному ориентированию клубней картофеля при вращения и вибрации роторов.

5. Исследовать режимы виброкинематики роторов в лабораторных условиях.

6. Изготовить экспериментальный образец вибро-ротационной сортировки.

7. Провести экспериментальные исследования в лабораторных и производственных условиях.

8. Определить эксплуатационные показатели и экономическую эффективность устройства.

Во второй главе «Теоретические исследования по обоснованию основных параметров вибро-ротационного сепарирующе-калибрующего устройства» представлена конструктивно-технологическая схема картофелесортировки с вибрационной роторно-пальцевой поверхностью (рис.1).

Рис.1. Конструктивно-технологическая

схема картофелесортировального модуля:

А, Б - участки калибрования; 1 - ковш; 2, 6 - транспортеры; 3, 4 - роторы; 5 - сборники; 7 - контейнеры

Комбинированная рабочая поверхность ротационного типа представляет собой набор параллельных валов, на которых в шахматном порядке с перекрытием установлены пальцевые роторы соседних рядов. Унифицированная роторно-пальцевая поверхность, установленная на общей раме, позволит из нескольких рядов роторов образовывать отдельные участки: 1-й сепарации просеивающихся примесей, II-ой выделения мелких нестандартных клубней весом до 25г, III-й калибрования мелкой фракции 25-50г, IV-й средней 50-80г и V-й крупной, более 80г.

Технологическая схема работы устройства с комбинированной рабочей поверхностью следующая: посредством загрузочного транспортера ворох картофеля подается на участок сепарации для выделения просеивающихся примесей, далее путем непосредственного перехода ворох поступает на участок выделения фуража (клубней массой до 25г) и аналогичным образом на участки калибрования мелкой и средней фракций. Отсепарированные примеси и выделенные в определенную фракцию клубни, посредством выгрузных транспортеров выносятся за пределы рабочей поверхности для затаривания в емкости.

Исследования процесса разделения картофеля на фракции указывают на целесообразность поперечных колебаний ротационной сортирующей поверхности для сокращения времени ориентации клубней относительно калибрующих отверстий. Поперечные колебания приведут к направленному ориентированию клубней в том случае, если амплитуда и частота колебаний роторов не приведут к перебрасыванию клубней в поперечном направлении на соседние роторы относительно продольного перемещения. То есть перемещение клубня должно осуществляться в пределах калибрующего отверстия, расположенного между вибрирующими роторами. Таким образом, что бы при минимальном смещении центра масс клубня происходил его ограниченный поворот для ускорения процесса ориентации.

При вибрации роторов удар по клубню не является центральным. Во время удара действующий на клубень импульс имеет как нормальную составляющую так и касательную. Вследствие того, что центр тяжести О не совпадает с точкой приложения импульса S, клубень получает и вращательное движение. В момент начала контакта клубня с ротором нормальная составляющая импульса вызывает момент относительно центра тяжести клубня больший, чем момент сил инерции, и поэтому клубень получая последовательные микроудары от вибрирующего ротора переходит в положение, показанное на рис.4.

Ориентирование можно рассматривать как процесс приведения клубней из любого положения в направленное длинной осью эллипсоида вдоль калибрующего отверстия. Процесс этот характеризуется рядом количественных и качественных показателей, в зависимости от которых определяются этапы ориентирования клубней, т.е. количеством переходов из одного устойчивого положения в другое до совпадения с продольным, а также средствами и способами ориентирования клубней.

Тело в зависимости от его формы и положения на ориентирующей поверхности может занимать устойчивое, неустойчивое и хаотичное положение.

Вывести тело из устойчивого или неустойчивого положения можно, приложив к нему дополнительно активную силу или момент в том числе за счет вибрации роторов.

В этой связи энергетически устойчивое положение клубня на ориентирующих поверхностях характеризуется работой всех внешних сил, направленных на вывод клубня из занимаемого положения, причём работа внешних сил меньше приращения запаса потенциальной энергии клубня, которое он получает при выходе из заданного положения, т.е.

,

где А - работа всех внешних сил, направленная на вывод клубня из занимаемого положения;

dW - приращение потенциальной энергии клубня в пределах от W0 до Wi.

Активными могут быть силы тяжести, силы взаимодействия соприкасающихся клубней, силы воздействия ориентирующих органов, силы сопротивления, силы инерции и т.п.

Для теоретического анализа влияния вибрации роторов на клубни картофеля использована расчетная схема, представленная на рис.2.

Угол поворота клубня за i-й период колебания сортировки можно определить по формуле

, (1)

где - угол поворота в начале i-го периода колебаний;

f - коэффициент трения;

N0 - постоянная, учитывающая силу молекулярного притяжения двух тел;

J - момент инерции;

е - величина несовпадения центра масс тела и геометрического центра;

фв - общее время скольжения вперёд;

фн - общее время скольжения назад.

Рис.2. Силы, действующие на клубень при вибрации роторов в поперечном направлении.

Дифференциальные уравнения относительного движения клубня в осях XOY, связанных с вибрирующей поверхностью имеют вид

(2),

(3),

где m - масса клубня;

А и щ - соответственно амплитуда и частота колебаний поверхности;

g - ускорение свободного падения;

N1 - нормальная реакция в первой точке соприкосновения;

F - сила сопротивления движению клубня, которую будем считать силой сухого (кулонова) трения.

При нахождении клубня на вибрирующей поверхности (y ? 0)

(4),

где f - коэффициент трения скольжения, а нормальная реакция определяется из (3):

(5)

Клубень может находиться на вибрирующей поверхности без отрыва от нее (без подбрасывания), если , т.е.

(6)

При выполнения условия (6), что клубни не перебрасываются из зоны вибрационного действия роторов, возникает необходимость анализа вероятности ориентирования клубней при действии вибрации. Для проведения анализа принудительного ориентирования клубней исследуем схему действия сил и моментов на клубень при взаимодействии с ротором.

Рис.3 Схема сил, действующих на клубень (вид сверху)

На основании теоремы о приведении плоской системы сил к данному центру, силу I приложенную в точке опоры О и моментом Му, вращающим ось OY против часовой стрелки в плоскости YOZ представим в виде:

(7)

где r - высота клубня.

Таким образом, на клубень действует некоторый момент стремящийся развернуть ось его вращения в пространстве. На основании вышесказанного момент Му вызывает возникновение другого момента Мх. стремящегося развернуть клубень в плоскости, перпендикулярной действию первого момента

(8)

где - момент инерции клубня относительно оси z1; щ - угловая скорость клубня вокруг оси z; - угловая скорость оси z вокруг центра масс клубня.

Очевидно, что в точке пересечения продолжений линий действия сил реакций находится мгновенный центр вращения клубня. Составим уравнение момента количества движения относительно мгновенного центра О1 и, взяв за параметр, определяющий вращение клубня, угол , получим

(9)

Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.