Рефераты. Исследования в современном управлении






Источник преобразований системы или её функций лежит обычно в самой системе; поскольку это связано с целесообразным характером поведения систем, существеннейшая черта целого ряда системных объектов - самоорганизация. С этим тесно связана и другая особенность: обязательное допущение у систем (или её элементов) некоторого множества индивидуальных характеристик и степеней свободы.

1.3.2  Общая теория систем

Все перечисленные моменты в той или иной мере стали методологически осознаваться в науке еще в XIX веке. Исследование систем началось примерно в одно и тоже время (на рубеже XIX-XX веков) в различных областях знания. Роль интеграции наук, организации взаимосвязей и взаимодействия между различными направлениями во все времена выполняла философия - наука наук, которая одновременно являлась и источником возникновения ряда научных направлений. В частности, в 30-е годы нашего столетия философия явилась источником возникновения обобщающего направления, названного теорией систем. Л. Берталанфи, считающийся основоположником этого направления, впервые сделал доклад о своей концепции на философском семинаре, пользуясь в качестве исходных понятий терминологией философии [1].

Берталанфи выдвинул идею построения теории, приложимой к системам любой природы. Один из путей реализации своей теории он видел в том, чтобы отыскивать структурные сходства законов, установленных в различных науках, и, обобщая их, выводить общесистемные закономерности. Одним из самых важных достижений Берталанфи является введение понятия открытой системы. В отличие от кибернетического подхода (об этом мы будем говорить ниже), где изучаются внутрисистемные обратные связи, а функционирование систем рассматривается просто как отклик на внешние воздействия, Берталанфи подчеркивает особое значение обмена системы веществом, энергией и информацией (негэнтропией) с окружающей средой. В открытой системе устанавливается динамическое равновесие, которое может быть направлено в сторону усложнения организации (вопреки второму закону термодинамики, благодаря вводу негэнтропии извне), и функционирование является не просто откликом на изменение внешних условий, а сохранение старого или установление нового подвижного внутреннего равновесия системы. Здесь усматриваются как кибернетические идеи гомеостазиса, так и новые моменты, имеющие свои истоки в биологии (Берталанфи был по специальности биологом).

Берталанфи и его последователи работают над тем, чтобы придать общей теории систем формальный характер. Однако, заманчивый замысел построить общую теорию систем как новую логико-математическую дисциплину не реализован полностью до сих пор. Не исключено, что наибольшую ценность общей теории систем представит не столько ее математическое оформление, сколько разработка целей и задач системных исследований, развитие методологии анализа систем, установление общесистемных закономерностей.

Следует так же отметить, что важный вклад в становление системных представлений в науку (еще до Л. Берталанфи) внес наш соотечественник А.А. Богданов. В 1911 году вышел в свет первый том, а в 1925 году - третий том его книги “Всеобщая организационная наука (тектология)” [2].

Большая общность тектологии связана с идеей Богданова о том, что все существующие объекты и процессы имеют определенную степень, уровень организованности. В отличие от конкретных естественных наук, изучающих специфические особенности организации конкретных явлений, тектология должна изучать общие закономерности организации для всех уровней организованности. Все явления рассматриваются как непрерывные процессы организации и дезорганизации. Богданов не дает строгого определения понятия организации, но отмечает, что уровень организации тем выше, чем сильнее свойства целого отличаются от простой суммы свойств его частей. Пожалуй, самой важной особенностью тектологии является то, что основное внимание уделяется закономерностям развития организации, рассмотрению соотношений устойчивого и изменчивого, значению обратных связей, учету собственных целей организации (которые могут как содействовать целям высшего уровня организации, так и противоречить им), роли открытых систем. Богданов довел динамические аспекты тектологии до рассмотрения проблемы кризисов, т.е. таких моментов в истории любой системы, когда неизбежна коренная, “взрывная” перестройка ее структуры. Он подчеркивал роль моделирования и математики как потенциальных методов решения задач тектологии.

Даже из этого небольшого обзора основных идей тектологии видно, что Богданов предвосхитил, а кое в чем и превзошел многие положения современных кибернетических и системных теорий. Тектология была “ориентирована на самый широкий охват реальности организационными категориями”, и это явилось первым из того класса характерных для XX века системных подходов, которые приобрели статус общенаучных, проторив дорогу кибернетике и синергетике. Последние можно считать наиболее крупными (в концептуальном плане) вкладом в философию, в формирование современных представлений о явлениях самоорганизации и развития мира в целом.


1.3.3  Эволюция представлений об энтропии

Прежде чем рассматривать следующие этапы развития системного подхода и системных исследований, необходимо объяснить и уточнить некоторые понятия, которые мы уже упоминали и будем использовать в дальнейшем. Проникновение методов теории информации в физику, биологию и другие области естествознания показало тесную взаимосвязь понятия количества информации с естественно-научным понятием “энтропия”.

Понятие энтропия, первоначально введенное Р. Клаузисом лишь с целью более удобного описания работы тепловых двигателей, усилиями многих ученых, и прежде всего Л. Больцмана, стало играть универсальную роль, определяя многие закономерности в поведении макроскопических систем. В 30-е годах нашего столетия энтропия стала мерой вероятности информационных систем и явилась основой теории информации (работы Л. Сцилларда, К. Шеннона)

Связь между энтропией и вероятностью установлена Л. Больцманом и выражается знаменитой формулой, носящей имя этого ученого:


H = slnW ,


где H - энтропия, W - термодинамическая вероятность состояния.

Существенно, что Больцман, связав второй принцип термодинамики с теорией вероятности, показал, что убывание энтропии не является невозможным, а только маловероятным. Второй принцип термодинамики становится констатацией того факта, что информация теряется различными способами, что ведет к увеличению энтропии системы, но, чтобы приобрести новую информацию и уменьшить энтропию, следует произвести новые измерения, т.е. затратить энергию

В конце 40-х годов Э. Шредингер, а затем и Н. Винер существенно расширили понятие энтропии - до понимания ее как меры дезорганизации систем любой природы. Эта мера простирается от максимальной энтропии (H=1), т.е. хаоса, полной неопределенности, до исчезновения энтропии (H=0), соответствующего наивысшему уровню организации, порядка.

Таким образом, можно выделить следующие этапы развития понятия энтропии, где она выступает как:


*                     мера рассеяния тепловой энергии в замкнутой термодинамической системе


-

Клаузис, Больцман

(1852 год)




*                     мера вероятности информационных систем (мера количества информации)

 -

Сциллард, Шеннон

(1929 год)




*                     мера дезорганизации систем любой природы

 -

Шредингер, Винер

(!944 год)

С помощью энтропии стало возможно количественно оценивать на первый взгляд качественные понятия, как “хаос” и “порядок”. Информация и энтропия связаны потому, что они характеризуют реальную действительность с точки зрения именно упорядоченности и хаоса, причем если информация - мера упорядоченности, то энтропия - мера беспорядка; одно равно другому, взятому с обратным знаком. Например, если на предприятии низка трудовая и технологическая дисциплина, идет брак, то мы можем утверждать, что здесь низок уровень организации, или велика энтропия. Она угрожающе растет ныне и в нашей экономике, социальной жизни.

Энтропия и информация служат, таким образом, выражением двух противоположных тенденций в процессах развития. Альтернативность и взаимосвязь понятий энтропии и информации нашли отражение в формуле


H + J = 1 (const).

Если система эволюционизирует в направлении упорядоченности, то ее энтропия уменьшается. Но это требует целенаправленных усилий, внесения информации, т.е. управления. “Мы плывем вверх по течению, борясь с огромным потоком дезорганизованности, который, в соответствии со вторым законом термодинамики, стремится все свести к тепловой смерти - всеобщему равновесию и одинаковости, т.е. энтропии. В мире, где энтропия в целом стремится к возрастанию, существуют местные временные островки уменьшающейся энтропии, это области прогресса. Механизм их возникновения состоит в естественном или целенаправленном отборе устойчивых форм. Человек всю жизнь борется с энтропией, гася ее извлечением из окружающей среды отрицательной энтропии – информации” [3].

Количество информации, отождествляемое Винером с отрицательной энтропией (негэнтропией), становится, подобно количеству вещества или энергии, одной из фундаментальных характеристик явлений природы. Введение понятия энтропии в теорию информации явилось, по выражению Бройля, “наиболее важной и красивой из идей, высказанных кибернетикой”, и рассматривается как большой вклад XX века в научную мысль [4]. Это положение называют еще вторым “краеугольным камнем” кибернетики. Отсюда - толкование кибернетики как теории организации, теории борьбы с мировым хаосом, с роковым возрастанием энтропии.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.