Рефераты. Применение физики в криминалистических исследованиях








3.2.1.4.Молекулярный спектральный анализ


Молекулярный спектральный анализ основан на изучении спектров электромагнитного излучения в инфракрасном, видимом и ультрафиолетовом диапазонах электромагнитных волн.

    При спектрофотометрическом анализе световой поток видимого или ультрафиолетового излучения от источника света через систему оптических зеркал попадает в монохроматор, где свет разлагается на отдельные компоненты, из которых выходная щель монохроматора в зависимости от угла поворота решетки выделяет свет определенной длины волны (близкого диапазона волн). Такой «профильтрованный» свет и попадает на образец. Путем поворота монохроматора можно добиться того, что на анализируемый образец. Путем поворота монохроматора можно добиться того, что на анализируемый образец будет попадать свет заданной длины волны. Интенсивность светового потока, проделавшего путь от источника излучения через монохроматор и образец, измеряется в фотоприемнике. По устройству спектрофотометры, работающие в видимой и ультрафиолетовой областях спектра, между собой почти не отличаются, однако для исследования в ультрафиолетовой области необходим особый источник излучения и специальные кварцевые кюветы, поскольку обычное стекло поглощает ультрафиолетовые лучи.

   Возможность применения явления поглощения света в количественном анализе основана на строгих математических зависимостях.

   На первом этапе работы со спектрофотометром необходимо обеспечить постоянную плотность светового потока, то есть качество источника излучения и всей оптической системы преобразований светового потока. Затем готовят «холостые пробы», которые по своему составу близки к анализируемым образцам, но не содержат даже следовых количеств определяемых компонентов. Интенсивность света, пропущенного холостым раствором, принимается за нулевое значение. Эта операция, получившая название установки нуля, очень важна, потому что свет определенной длины волны зачастую поглощает не один, а сразу несколько компонентов раствора. В этих случаях результаты анализов оказываются неточными, и чтобы уменьшить погрешности, приходится проводить довольно сложные расчеты и вносить затем соответствующие поправки. Таким образом, в ходе анализа на пути светового потока помещается, прежде всего «холостой» раствор, показание регистрирующего прибора выводится на нулевую отметку, затем на место «холостого» образца устанавливается анализируемый образец и регистрируется показание прибора.

   В современных спектрофотометрах такая двухступенчатая схема измерений заменена на одноступенчатую. Для этого свет, выходящий из монохроматора, делится на два потока, которые направляются на две кюветы (специальные емкости, в которые наливаются растворы для измерения) с растворами образца и «холостой» пробы. Детектор воспринимает сигналы от каждого светового потока, и, если плотности этих потоков между собой заметно отличаются, то часть светового потока начинают отсекать путем введения оптического клина. По мере того как толщина клина увеличивается, интенсивность потока света снижается, и, наконец, при определенном положении клина плотность обоих потоков становится одинаковой. Аналитику остается только зарегистрировать положение клина, которое зависит от поглощения анализируемого образца. Последнюю операцию – пересчет показаний детектора на концентрацию анализируемого компонента – выполняет микропроцессор.

   Молекула не является какой-то жесткой конструкцией. В то время пока электроны непрерывно вращаются по своим орбитам, атомы, объединенные в молекулу, также не статичны, а, как правило, совершают те или иные движения относительно друг друга. В двухатомных молекулах движения (называемые колебаниями) вдоль линии связи приводят к изменению расстояния между соседними атомами (валентные колебания), а в многоатомных и к изменению угла между соседними связями (деформационные колебания). Каждый атом колеблется с собственной частотой и амплитудой. Тепловая энергия, выделяющаяся при таких колебаниях, по своей величине соответствует излучению возбужденной молекулы в инфракрасной (ИК) области спектра. Это означает, что, поглотив энергию одного ИК-фотона, атомы, образующие химическую связь, начнут колебаться быстрее, а испустив энергию ИК-фотона, уменьшают частоту колебаний.

   Для атомов, входящих в молекулу, характерны движения еще одного вида – вращения атомов вокруг б-связи. Переходы между вращательными энергетическими уровнями сопровождаются меньшими изменениями энергий, чем между колебательными уровнями, и их можно наблюдать в дальней инфракрасной или микроволновой областях.

   Интерпретацию ИК-спектров чаще всего проводят, сопоставляя спектральную картину анализируемого вещества со спектрами ряда известных соединений. Возможность применения такого подхода основана на том, что одни и те же группы атомов, соединенные одинаковыми связями, обнаруживают одну и ту же характеристическую частоту колебаний в самых разных соединениях, и для каждого типа колебаний характерна своя энергетическая область. Спектроскописты научились довольно точно интерпретировать ИК-спектры и по появлению в спектре тех или иных полос могут установить присутствие определенных функциональных атомных групп в исследуемом образце.

   Существуют два основных способа идентификации химических соединений по ИК-спектрам. Первый из них – определение природы функциональных групп по положению полос в спектре и реконструкцией целой молекулы; это напоминает сборку отдельных деталей из кубиков в детской игре «Мозаика». Однако с увеличением числа атомных групп возрастает и число вариантов их сочленения, поэтому проводить идентификацию только по ИК-спектрам можно лишь в случае очень простых соединений. При изучении более сложного строения на помощь приходят другие методы анализа, в частности масс-спектрометрия. Другой способ идентификации – метод «отпечатков пальцев». С этой целью для спектра исследуемого вещества подыскивают «двойник» из набора спектров различных веществ в спектральном атласе. Подобным образом можно идентифицировать уже достаточно сложные молекулы, хотя данный метод эффективен только при использовании компьютера. Задача ЭВМ заключается в том, чтобы отобрать из памяти 2-3 спектра, наиболее близких к спектру исследуемого вещества, а окончательное решение вопроса о том, к какому из них ближе всего подходит полученный спектр, остается за исследователем.



3.2.2. Методы исследования внутренней структуры


   По уровню выявления деталей внутренней структуры объектов (например, изделий из металлов и сплавов, керамики, лакокрасочных покрытий и т.п.) различают две группы методов.

1)     Методы выявления  микродефектов (пустоты, неравномерности распределения плотности вещества). При этом используются: рентгеновская, ультразвуковая, магнитная дефектоскопия, методы просвечивающей и растровой электронной микроскопии. Эти же методы применяются для установления дефектов технологии (например, при исследовании тонких пленок и покрытий), особенностей надмолекулярной структуры полимерных материалов и т.п.

2)     Методы исследования структуры на молекулярном и атомарном уровне: молекулярная спектроскопия и рентгеноструктурный анализ. Среди последних различают: рентгеноструктурный анализ поликристаллов и монокристаллов, который позволяет исследовать качественный и количественный состав индивидуальных компонентов (химических соединений) вещества, определить кристаллическую структуру монокристаллов: рентгеновский фазовый анализ, который позволяет исследовать наряду с фазовым составом также текстуру материалов, эффекты малоуглового рассеивания полимерных материалов. Рентгеновский структурный анализ монокристаллов открывает возможности для определения пространственного расположения атомов в индивидуальных химических соединениях, межатомных расстояний, углов между химическими связями. Благодаря этому удается идентифицировать вещества по информации на атомном уровне.



                                                  ЗАКЛЮЧЕНИЕ       



    Итак,  вещественные доказательства, исследуемые судебными экспертами, обладают многими физическими и химическими свойствами, существенными для решения криминалистических задач. Физические константы, результаты анализа химических свойств часто дополняют друг друга. Для установления этих свойств применяются методы и приборы, сущность и принцип  которых основаны на законах физики. Поэтому эффективное применение данных методов и приборов требует    знания  этих законов, а некоторые экспертные специальности – высшего физического, физико-химического, химико-физического образования.

  





   

 

 


 



















                   




                        СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ



    1.Васильев А.Н., Яблоков Н.П. Предмет, система и теоретические основы

криминалистики. М., 1984.

    2.Митричев В.С. Криминалистическая экспертиза материалов, веществ и изделий. Саратов, 1980.

    3.Криминалистика социалистических стран. Под редакцией проф. В.Я. Колдина, М., 1986.

    4.Шляхов А.Р. Судебная экспертиза: организация и проведение. М.,1979.

    5.Корухов Ю. Г. Исследование объектов криминалистической экспертизы с помощью некоторых оптических приборов. – Методика криминалистической экспертизы, № 2,М.,1961.

    6.Спектральный анализ чистых веществ. Л.,1971

    7.Физический энциклопедический словарь. Гл. ред. Прохоров А.М., М.,1984.

   



     




























Ход лучей через выпуклую линзу




                                                                                                                                                 

                                              а                                           б

                                                                                                                                                                                 






  а – параллельный пучок света, проходя через линзу, собирается в фокусе F;

 б – расходящийся из фокуса F пучок света, проходя через линзу, образует параллельный пучок.

                             

                                                     рис. 1




 Два примера возникновения изображения при использовании выпуклой линзы

    


 




           а

  




          б






     а– точка P’ – действительное обратное (перевернутое) увеличенное изображение точки P;

     б – точка P’ – мнимое прямое увеличенное изображение точки P.


                                                      рис.2



       Принципиальная схема работы оптического микроскопа



                                                 Рис.3



Оптический микроскоп



                                                  

                                                    Рис.4


                Принципиальная схема электронного микроскопа



                                                  Рис.5    



 



















     Диаграмма электронных переходов между различными энергетическими                                                        


                           уровнями при поглощении и излучении света         

 


                                                          рис.6

                          

                             





                            Блок-схема эмиссионного спектрометра


                                                           Рис.7










                    Принципиальная схема призменного монохроматора


Рис.8



Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.