Рефераты. Подразделения Мирового океана, его происхождение, причины колебаний






Подразделения Мирового океана, его происхождение, причины колебаний

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ


САХАЛИНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ


Факультет природопользования


Кафедра геологии и геологического мониторинга








РЕФЕРАТ



По дисциплине «Гидрология»



На тему: «Подразделения Мирового океана, его происхождение, причины колебаний»






Выполнил студент 1 курса специальности «природопользования» (пр. 156)

Шевцов К.В.




Проверил  зав. кафедрой Генсиоровский Ю.В.






Южно-Сахалинск

2006


Оглавление

Введение……………………………………………………………………………..       3

Происхождение океана……………………………………………………………..        3

Подразделения мирового океана…………………………………………………..        7

Уровень океанов и морей и причины колебаний…………………………………      14

Литература……………………………………………………………………………      16

ВВЕДЕНИЕ

Значение Мирового Океана трудно переоценить. Благодаря нему зародилась жизнь на Земле, благодаря нему мы имеем огромные запасы биоресурсов. Океан является аккумулятором тепла и существенно влияет на климат планеты. Он близок любому жителю нашего острова, но тем ни менее мало изучен. Данная работа является попыткой объединить новые знания физической океанографии и океанологии с классическими источниками.

ПРОИСХОЖДЕНИЕ МИРОВОГО ОКЕАНА

Молодая Земля в катархее была лишена как гидросферы, так и плотной атмосферы  Поэтому естественно предположить, что эти внешние и весьма подвижные геосферы возникли на Земле только благодаря ее дегазации, которая могла начаться лишь после возникновения в недрах процессов дифференциации земного вещества и появления первых признаков эндогенной тектономагматической активности на поверхности около 4 млрд лет назад. Следует ожидать также, что дегазация Земли, а точнее, ее мантии существенно зависела не только от тектонической активности, определяемой интенсивностью конвективных движений в мантии, но и от ее химического состава.

В протерозое и фанерозое после окончания процесса формирования земного ядра понятия “конвектирующая мантия” и просто “мантия Земли” полностью совпадают. Но в архее это было не так. Под конвектирующей мантией в архее будем понимать только участки земной оболочки, прошедшие дифференциацию (перекрывающие зоны сепарации железа и его окислов в земных недрах) и охваченные конвективными течениями. В раннем архее конвектирующая мантия была еще сравнительно тонкой, но постепенно увеличивалась по массе, скорее всего существовала в виде кольцевой геосферы под экваториальным поясом Земли. Только к концу архея она превратилась в полностью сферическую оболочку.

Во второй половине ХХ в., особенно после опубликования работы В. Руби (Rubey, 1951) о геологической истории морской воды, стало почти общепризнанным представление о том, что происхождение гидросферы и накопление воды в океанах полностью определялось дегазацией мантии и, таким образом, зависело от эндогенных режимов развития Земли. В большинстве работ предполагалась ранняя дегазация Земли, начавшаяся сразу же после ее возникновения, но в разных моделях протекавшая с разной скоростью. Однако в моделях такого рода скорость дегазации мантии принималась произвольной или обосновывалась общими соображениями, но только при условии равенства массы дегазированной воды ее реальной массе в гидросфере. Поэтому и основанные на таких подходах закономерности накопления воды в океанах обычно носили лишь умозрительный характер и полностью исключали количественный подход.

С появлением теории тектоники литосферных плит и особенно после разработки основ концепции глобальной эволюции Земли возникла реальная возможность количественного описания процессов формирования океанов на Земле. Первые количественные модели роста массы воды в Мировом океане, основанные на представлениях наиболее общей концепции глобальной эволюции Земли (вобравшей в себя, как составную часть, тектонику литосферных плит), были выполнены еще в середине 70-х – начале 80-х годов (Сорохтин, 1974, 1979). В этих моделях учитывалось, что скорость дегазации Земли прямо пропорциональна скорости конвективного массообмена в мантии Q&, а главный вклад в мантийную конвекцию вносит наиболее

мощный энергетический процесс – гравитационная химико-плотностная дифференциация земного вещества на плотное окисно-железное ядро и остаточную силикатную мантию. Однако и в этих работах начало дегазации Земли еще относилось к моменту окончания процесса формирования нашей планеты около 4,6 млрд лет назад.

Несколько позже (Монин, Сорохтин, 1984; Сорохтин, Ушаков, 1991) были опубликованы более совершенные модели формирования гидросферы, основанные на бародиффузионном и зонном механизмах дифференциации земного вещества. В этих моделях уже учитывалось, что дегазация Земли могла начаться значительно позже времени ее образования (приблизительно на 600 млн лет) – только после предварительного прогрева первоначально холодных земных недр до температуры начала плавления силикатов и возникновения у молодой Земли первой астеносферы.

У молодой Земли отсутствовала гидросфера, а земная атмосферы была весьма разреженной и состояла только из азота и благородных газов. Все же летучие элементы и соединения, входящие сейчас в состав этих геосфер, тогда еще находились в земных недрах в связанном состоянии. Дегазация Земли началась только после расплавления земного вещества в ее верхних слоях, возникновения первых конвективных движений в верхней мантии и разрушения первозданной литосферной оболочки, т.е. после начала тектономагматической активности Земли около 4 млрд лет назад.

Первичная дегазация мантии, по-видимому, связана со снижением растворимости летучих компонентов в силикатных расплавах при относительно малых давлениях. В результате излившиеся на поверхность Земли мантийные расплавы, в основном базальты, а в архее и коматиитовые магмы, вскипали, отдавая излишки летучих элементов и соединений в атмосферу. Кроме того, часть летучих могла освобождаться и при выветривании изверженных пород после их разрушения в поверхностных условиях, однако главным механизмом дегазации воды все-таки является снижение ее растворимости при охлаждении и кристаллизации водосодержащих базальтовых расплавов при низких давлениях. Отсюда следует, что скорость дегазации Земли пропорциональна массе изливающихся на земную поверхность в единицу времени мантийных пород, содержанию в них летучих компонентов и их подвижности. В первом приближении скорость излияния мантийных пород пропорциональна тектонической активности Земли, определяемой ее суммарными теплопотерями.

Поскольку океан постепенно увеличивался в объеме, то в истории его развития неизбежно должен был наступить такой момент, когда океанические воды перекрыли собой гребни срединно-океанических хребтов с расположенными на них рифтовыми зонами Земли. После этого должна была быстро возрасти гидратация пород океанической коры и как следствие – измениться условия выплавки континентальной коры в зонах поддвига океанических плит под континенты и островные дуги. Такие изменения, отмечаемые в геологической летописи Земли, действительно происходили на рубеже архея и протерозоя (Тейлор, Мак-Леннан, 1988), и с точки зрения теории тектоники литосферных плит они неплохо объясняются увеличением степени гидратации пород океанической коры. Именно такая интерпретация послужила основой для количественных расчетов некоторых предшествующих моделей эволюции Мирового океана (Сорохтин, 1974; Монин, Сорохтин, 1984).


Однако в истории развития Мирового океана наиболее четко и резко должен выделяться момент полного насыщения пород океанической коры водой и последующего отрыва поверхности растущего океана от среднего уровня стояния гребней срединно-океанических хребтов. Объясняется это тем, что до того времени вся дегазировавшаяся из мантии избыточная вода полностью уходила в океаническую кору (масса океана временно сохранялась приблизительно постоянной), т.е., попадая в рифтовые зоны, вода из них обратно уже не вытекала. В результате до этого момента не могла существовать и свободная циркуляция океанических вод по толще океанической коры, а следовательно, не мог происходить и широкий вынос минеральных веществ из рифтовых зон Земли в океаны. Поэтому только после полного насыщения океанической коры водой и некоторого подъема поверхности океана над уровнем гребней срединно-океанических хребтов из рифтовых зон в океаны стали в изобилии выноситься минеральные компоненты океанической коры, тогда как до этого момента состав океанических вод преимущественно определялся только континентальным стоком.

Следовательно, после описываемого события должна была резко измениться и геохимия океанических осадков – в их составе должны были в изобилии появиться выносимые из мантии элементы. Наиболее характерным из таких элементов и ярким индикатором искомого рубежа – момента насыщения океанической коры водой, безусловно, является железо. Ведь в докембрийской мантии в заметных количествах еще содержалось свободное (металлическое) железо. Поднимаясь вместе с горячим мантийным веществом в рифтовые зоны, оно вступало там в реакцию с морской водой, образуя в бескислородной среде в присутствии углекислого газа хорошо растворимый в воде бикарбонат железа:

Fe + H2О + 2СО2 → Fe(HСО3)2,

а также формальдегид – одно и соединений, послуживших, по-видимому, основой возникновения жизни на Земле (Галимов, 2001):

2Fe + H2O + CO2 → 2FeO + HCOH + 3,05 ккал/моль.

После перекрытия поверхностью океана гребней срединно-океанических хребтов растворимая гидроокись железа стала разноситься по всему океану. Попадая на

мелководья с богатым фитопланктоном, двухвалентная окись железа могла окисляться микроводорослями прямо in situ в воде почти без выделения кислорода в атмосферу:

2Fe(HСО3)2 + О → Fe2О3 + 4СО2 + 2Н2О.

континентальной коре

Если спросить человека: "Отчего море соленое?", он почти наверняка ответит: "Оттого же, отчего солоны бессточные озера (вроде озера Эльтон, снабжающего нас пищевой поваренной солью): впадающие в море реки несут некоторое количество солей, потом вода испаряется, а соль остается". Ответ этот неверен: соленость океана имеет совершенно иную природу, чем соленость внутриконтинентальных конечных водоемов стока. Дело в том, что вода первичного океана имела различные примеси. Одним источником этих примесей были водорастворимые атмосферные газы, другим - горные породы, из которых в результате эрозии (как на суше, так и на морском дне) вымываются различные вещества.

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.