Рефераты. Радиация, ее влияние на организм человека






Радиация, ее влияние на организм человека

ИНСТИТУТ УПРАВЛЕНИЯ И ЭКОНОМИКИ

Г. САНКТ-ПЕТЕРБУРГ

Курсовая работа

По дисциплине Экология

По теме Радиация, ее влияние на организм человека

Ф.И.О.: Фогель В.Н.

Курс: 2

Факультет: социального управления

Специальность: социально-культурный сервис и туризм

Форма обучения: очная

____________

подпись

Проверил: ___________________ ____________
Ф.И.О. подпись

Калининград,

2002 г. Содержание

Введение 3

Глава II Радиация 4

1.1 Основные понятия и единицы измерения 4

Глава III Влияние радиации на организмы 6

Глава IV Источники радиационного излучения 10

2.1 Естественные источники 10

2.2 Источники, созданные человеком (техногенные) 11

Заключение 14

Список использованной литературы 15

Введение

С давних времен человек совершенствовал себя, как физически, так и умственно, постоянно создавая и совершенствуя орудия труда. Постоянная нехватка энергии заставляла человека искать и находить новые источники, внедрять их не заботясь о будущем. Таких примеров множество: паровой двигатель побудил человека к созданию огромных фабрик, что за собой повлекло мгновенное ухудшение экологи в городах. Другим примером служит создание каскадов гидроэлектростанций, затопивших огромные территории и изменившие до неузнаваемости экосистемы отдельных районов. В порыве за открытиями в конце XIX в. двумя учеными: Пьером Кюри и Марией Сладковской-Кюри было открыто явление радиоактивности. Именно это достижение поставило существование всей планеты под угрозу. За 100 с лишним лет человек наделал столько глупостей, сколько не делал за все свое существование. Давно уже прошла Холодная война, мы уже пережили Чернобыль и многие засекреченные аварии на полигонах, однако проблема радиационной угрозы никуда не ушла и посей день служит главной угрозой биосфере.

Радиация играет огромную роль в развитии цивилизации на данном историческом этапе. Благодаря явлению радиоактивности был совершен существенный прорыв в области медицины и в различных отраслях промышленности, включая энергетику. Но одновременно с этим стали всё отчётливее проявляться негативные стороны свойств радиоактивных элементов: выяснилось, что воздействие радиационного излучения на организм может иметь трагические последствия. Подобный факт не мог пройти мимо внимания общественности. И чем больше становилось известно о действии радиации на человеческий организм и окружающую среду, тем противоречивее становились мнения о том, насколько большую роль должна играть радиация в различных сферах человеческой деятельности.

К сожалению, отсутствие достоверной информации вызывает неадекватное восприятие данной проблемы. Газетные истории о шестиногих ягнятах и двухголовых младенцах сеют панику в широких кругах. Проблема радиационного загрязнения стала одной из наиболее актуальных. Поэтому необходимо прояснить обстановку и найти верный подход. Радиоактивность следует рассматривать как неотъемлемую часть нашей жизни, но без знания закономерностей процессов, связанных с радиационным излучением, невозможно реально оценить ситуацию.

Для этого создаются специальные международные организации, занимающиеся проблемами радиации, в их числе существующая с конца 1920-х годов Международная комиссия по радиационной защите (МКРЗ), а также созданный в 1955 году в рамках ООН Научный Комитет по действию атомной радиации (НКДАР).

Глава I

Радиация

Радиация существовала всегда. Радиоактивные элементы входили в состав Земли с начала ее существования и продолжают присутствовать до настоящего времени. Однако само явление радиоактивности было открыто всего сто лет назад.

В 1896 году французский ученый Анри Беккерель случайно обнаружил, что после продолжительного соприкосновения с куском минерала, содержащего уран, на фотографических пластинках после проявки появились следы излучения. Позже этим явлением заинтересовались Мария Кюри (автор термина “радиоактивность”) и ее муж Пьер Кюри. В 1898 году они обнаружили, что в результате излучения уран превращается в другие элементы, которые молодые ученые назвали полонием и радием. К сожалению люди, профессионально занимающиеся радиацией, подвергали свое здоровье, и даже жизнь опасности из-за частого контакта с радиоактивными веществами. Несмотря на это исследования продолжались, и в результате человечество располагает весьма достоверными сведениями о процессе протекания реакций в радиоактивных массах, в значительной мере обусловленных особенностями строения и свойствами атома.

Известно, что в состав атома входят три типа элементов: отрицательно заряженные электроны движутся по орбитам вокруг ядра - плотно сцепленных положительно заряженных протонов и электрически нейтральных нейтронов. Химические элементы различают по количеству протонов. Одинаковое количество протонов и электронов обуславливает электрическую нейтральность атома. Количество нейтронов может варьироваться, и в зависимости от этого меняется стабильность изотопов.

Большинство нуклидов (ядра всех изотопов химических элементов) нестабильны и постоянно превращаются в другие нуклиды. Цепочка превращений сопровождается излучениями: в упрощенном виде, испускание ядром двух протонов и двух нейтронов (-частицы) называют -излучением, испускание электрона - -излучением, причем оба этих процесса происходят с выделением энергию. Иногда дополнительно происходит выброс чистой энергии, называемый -излучением.

1.1 Основные термины и единицы измерения (терминология НКДАР)

Радиоактивный распад - весь процесс самопроизвольного распада нестабильного нуклида.

Радионуклид - нестабильный нуклид, способный к самопроизвольному распаду.

Период полураспада изотопа - время, за которое распадается в среднем половина всех радионуклидов данного типа в любом радиоактивном источнике.

Радиационная активность образца - число распадов в секунду в данном радиоактивном образце; единица измерения - беккерель (Бк).

Поглощенная доза единица измерения в системе СИ - грэй (Гр) - энергия ионизирующего излучения, поглощенная облучаемым телом (тканями организма), в пересчете на единицу массы.

Эквивалентная доза единица измерения в системе СИ - зиверт (Зв)

- поглощенная доза, умноженная на коэффициент, отражающий способность данного вида излучения повреждать ткани организма.

Эффективная эквивалентная доза единица измерения в системе СИ - зиверт (Зв) - эквивалентная доза, умноженная на коэффициент, учитывающий разную чувствительность различных тканей к облучению.

Коллективная эффективная эквивалентная доза единица измерения в системе СИ - человеко-зиверт (чел-Зв) - эффективная эквивалентная доза, полученная группой людей от какого-либо источника радиации.

Полная коллективная эффективная эквивалентная доза - коллективная эффективная эквивалентная доза, которую получат поколения людей от какого-либо источника за все время его дальнейшего существования”.

Глава II

Влияние радиации на организмы

Воздействие радиации на организм может быть различным, но почти всегда оно негативно. В малых дозах радиационное излучение может стать катализатором процессов, приводящих к раку или генетическим нарушениям, а в больших дозах часто приводит к полной или частичной гибели организма вследствие разрушения клеток тканей.

Сложность в отслеживании последовательности процессов, вызванных облучением, объясняется тем, что последствия облучения, особенно при небольших дозах, могут проявиться не сразу, и зачастую для развития болезни требуются годы или даже десятилетия. Кроме того, вследствие различной проникающей способности разных видов радиоактивных излучений они оказывают неодинаковое воздействие на организм: -частицы наиболее опасны, однако для -излучения даже лист бумаги является непреодолимой преградой; -излучение способно проходить в ткани организма на глубину один-два сантиметра; наиболее безобидное -излучение характеризуется наибольшей проникающей способностью: его может задержать лишь толстая плита из материалов, имеющих высокий коэффициент поглощения, например, из бетона или свинца.

Также различается чувствительность отдельных органов к радиоактивному излучению. Поэтому, чтобы получить наиболее достоверную информацию о степени риска, необходимо учитывать соответствующие коэффициенты чувствительности тканей при расчете эквивалентной дозы облучения:

0,03 - костная ткань

0,03 - щитовидная железа

0,12 - красный костный мозг

0,12 - легкие

0,15 - молочная железа

0,25 - яичники или семенники

0,30 - другие ткани

1,00 - организм в целом.

Вероятность повреждения тканей зависит от суммарной дозы и от величины дозировки, так как благодаря репарационным способностям большинство органов имеют возможность восстановиться после серии мелких доз.

В таблице 1 приведены крайние значения допустимых доз радиации:

Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.