Рефераты. Проблемы захоронения радиоактивных отходов в геологических формациях






Категории РАО

Удельная активность, Ки/л (Бк/кг)

Низкоактивные

ниже 10-5 (ниже 3,7*105)

Среднеактивные

10-5 - 1 (3,7*105 - 3,7*1010)

Высокоактивные

выше 1 (выше 3,7*1010)

Из всех видов РАО жидкие наиболее распространены, так как в растворы переводят как вещество конструкционных материалов (нержавеющих сталей, циркониевых оболочек ТВЭЛов и т.п.), так и технологические элементы (соли щелочных металлов и др.). Большая часть жидких РАО образуется за счет атомной энергетики. Отработавшие свой ресурс ТВЭЛы, объединенные в единые конструкции - тепловыделяющие сборки, аккуратно извлекают и выдерживают в воде в специальных бассейнах-отстойниках для снижения активности за счет распада короткоживущих изотопов. За три года активность снижается примерно в тысячу раз. Затем ТВЭЛы отправляют на радиохимические заводы, где их измельчают механическими ножницами и растворяют в горячей 6-нормальной азотной кислоте. Образуется 10% раствор жидких высокоактивных отходов. Таких отходов производится порядка 1000 т в год по всей России (20 цистерн по 50 т.).

Для твердых РАО был использован вид доминирующего излучения и мощности экспозиционной дозы непосредственно на поверхности отходов таблица 2.

Таблица 2. Классификация твердых радиоактивных отходов

Категории РАО

Мощность экспозиционной дозы, Р/ч

Вид доминирующего излучения

альфа-излучатели, Ки/кг

бета-излучатели, Ки/кг

Мощность дозы гамма-излучения (0,1м от поверхности), Гр/ч

Низкоактивные

ниже 0,2

2*10-7 - 10-5

2*10-6 - 10-4

3*10-7 - 3*10-4

Среднеактивные

0,2 - 2

10-5 - 10-2

10-4 - 10-1

3*10-4 - 10-2

Высокоактивные

выше 2

выше 10-2

выше 10-1

выше 10-2

Твердые РАО -- это та форма радиоактивных отходов, которая непосредственно подлежит хранению или захоронению. Существует 3 основных вида твердых отходов :

остатки урана или радия, не извлеченныме при переработке руд,

искусственные радионуклиды, возникшие при работе реакторов и ускорителей,

выработавшие ресурс, демонтированные реакторами, ускорителями, радиохимическим и лабораторным оборудованием.

Для классификации газообразных РАО также используется параметр удельной (объемной) активности таблица 3.

Таблица 3. Классификация газообразных радиоактивных отходов

Категории РАО

Объемная активность, Ки/м3

Низкоактивные

ниже 10-10

Среднеактивные

10-10 - 10-6

Высокоактивные

выше 10-6

Газообразные РАО образуются в основном при работе АЭС, радиохимических заводов по регенерации топлива, а также при пожарах и других аварийных ситуациях на ядерных объектах.

Это радиоактивный изотоп водорода 3Н (тритий), который не задерживается нержавеющей сталью оболочки твэлов, но поглощается (99 %) циркониевой оболочкой. Кроме того при делении ядерного топлива образуется радиогенный углерод, а также радионуклиды криптона и ксенона.

Инертные газы, в первую очередь 85Kr (T1/2 = 10,3 года), предполагают улавливать на предприятиях радиохимической промышленности, выделяя его из отходящих газов с помощью криогенной техники и низкотемпературной адсорбции. Газы с тритием окисляются до воды, а углекислый газ, в котором присутствует радиогенный углерод, химически связывается в карбонатах.

3. Захоронение радиоактивных отходов.

Проблема безопасного захоронения РАО является одной из тех проблем, от которых в значительной мере зависят масштабы и динамика развития ядерной энергетики. Генеральной задачей безопасного захоронения РАО является разработка таких способов их изоляции от биоцикла, которые позволят устранить негативные экологические последствия для человека и окружающей среды. Конечной целью заключительных этапов всех ядерных технологий является надежная изоляция РАО от биоцикла на весь период сохранения отходами радиотоксичности.

В настоящее время разрабатываются технологии иммобилизации РАО и исследуются различные способы их захоронения, основными критериями при выборе которого для широкого использования являются следующие: - минимизация затрат на реализацию мероприятий по обращению с РАО; - сокращение образующихся вторичных РАО.

За последние годы создан технологический задел для современной системы обращения с РАО. В ядерных странах имеется полный комплекс технологий, позволяющих эффективно и безопасно перерабатывать радиоактивные отходы, минимизируя их количество. В общем виде цепь технологических операций обращению с ЖРО может быть представлена в следующем виде :

Однако нигде в мире не выбран метод окончательного захоронения РАО, технологический цикл обращения с РАО, не является замкнутым: oтвержденные ЖРО, так же как и ТРО, хранятся на специальных контролируемых площадках, создавая угрозу радиоэкологической обстановке мест хранения.

3.1. Захоронение РАО в горных породах


На сегодняшний день всеобще признано (в том числе и МАГАТЭ), что наиболее эффективным и безопасным решением проблемы окончательного захоронения РАО является их захоронение в могильниках на глубине не менее 300-500 м в глубинных геологических формациях с соблюдением принципа многобарьерной защиты и обязательным переводом ЖРО в отвержденное состояние.
Опыт проведения подземных ядерных испытаний доказал, что при определенном выборе геологических структур не происходит утечки радионуклидов из подземного пространства в окружающую среду.

Таким образом, при решении проблемы обезвреживания радиоактивных отходов использование “опыта, накопленного природой”, прослеживается особенно наглядно. Недаром именно специалисты в области экспериментальной петрологии оказались едва ли не первыми, кто оказался готов решать возникшую проблему.

Они позволяют выделять из смеси элементов радиоактивных отходов отдельные группы, близкие по своим геохимическим характеристикам, а именно:

· щелочные и щелочноземельные элементы;

· галогениды;

· редкоземельные элементы;

· актиниды.

Для этих групп элементов можно попытаться найти породы и минералы, перспективные для их связывания.

Природные химические (и, даже, ядерные) реакторы, производящие токсичные вещества, - не новость в геологической истории Земли. В качестве примера можно привести месторождение Окло, где ~ 200 млн. лет назад в течение 500 тыс. лет на глубине ~ 3,5 км действовал природный реактор, прогревавший окружающие породы до 600°С. Сохранение большинства радиоизотопов на месте их образования обеспечивалось их изоморфным вхождением в уранинит. Растворению же последнего, препятствовала восстановительная обстановка. Тем не менее около 3 млрд. лет назад на планете зародилась, успешно сосуществует рядом с очень опасными веществами и развивается жизнь.

Рассмотрим основные пути саморегуляции природы с точки зрения их использования в качестве методов обезвреживания отходов техногенной деятельности человечества. Намечаются четыре таких принципа.

а) Изоляция - вредные вещества концентрируются в контейнерах и защищаются специальными барьерными веществами. Природным аналогом контейнеров могут служить слои водоупоров. Однако, это - не слишком надежный способ обезвреживания отходов: при хранении в изолированном объеме опасные вещества сохраняют свои свойства и при нарушении защитного слоя могут вырываться в биосферу, убивая все живое. В природе разрыв таких слоев приводит к выбросам ядовитых газов (вулканическая активность, сопровождающаяся взрывами и выбросами газов, раскаленного пепла, выбросы сероводорода при бурении скважин на газ - конденсат). При хранении опасных веществ в специальных хранилищах также иногда происходит нарушение изолирующих оболочек с катастрофическими последствиями. Печальный пример из техногенной деятельности человека - челябинский выброс радиоактивных отходов в 1957 году из-за разрушения контейнеров - хранилищ. Изоляция применяется для временного хранения радиоактивных отходов; в будущем необходимо реализовать принцип многобарьерной защиты при их захоронении, одним из составных элементов этой защиты будет слой изоляции.

б) Рассеяние - разбавление вредных веществ до уровня, безопасного для биосферы. В природе действует закон всеобщего рассеяния элементов В.И.Вернадского. Как правило, чем меньше кларк, тем опаснее для жизни элемент или его соединения (рений, свинец, кадмий). Чем больше кларк элемента, тем он безопаснее - биосфера к нему "привыкла". Принцип рассеяния широко используется при сбросе техногенных вредных веществ в реки, озера, моря и океаны, а также в атмосферу - через дымовые трубы. Рассеяние использовать можно, но видимо, только для тех соединений, время жизни которых в природных условиях невелико, и которые не смогут дать вредных продуктов распада. Кроме того, их не должно быть много. Так, например, СО2 - вообще говоря, не вредное, а иногда даже полезное соединение. Однако, возрастание концентрации углекислоты во всей атмосфере ведет к парниковому эффекту и тепловому загрязнению. Особенно страшную опасность могут представлять вещества (например, плутоний), получаемые искусственно в больших количествах. Рассеяние до сих пор применяется для удаления отходов малой активности и, исходя из экономической целесообразности, будет еще долго оставаться одним из методов для их обезвреживания. Однако в целом в настоящее время возможности рассеивания в основном исчерпаны и надо искать другие принципы.

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.