Понятие диссипативности тесно связано с понятием параметров порядка. Самоорганизующиеся системы - это обычно очень сложные открытые системы, которые характеризуются огромным числом степеней свободы. Однако далеко не все степени свободы системы одинаково важны для её функционирования. С течением времени в системе выделяется небольшое количество ведущих, определяющих степеней свободы, к которым «подстраиваются» остальные. Такие основные степени свободы системы получили название параметров порядка.
В процессе самоорганизации возникает множество новых свойств и состояний. Очень важно, что обычно соотношения, связывающие параметры порядка, намного проще, чем математические модели, детально описывающие всю новую систему. Это связано с тем, что параметры порядка отражают содержание оснований неравновесной системы. Поэтому задача определения параметров порядка - одна из важнейших при конкретном моделировании самоорганизующихся систем.
После открытия самоорганизации в простейших системах неорганической природы стало ясным, что весь окружающий нас мир и Вселенная представляют собой совокупность разнообразных самоорганизующихся процессов, которые служат основой любой эволюции.
Современная наука процесс самоорганизации систем определяет следующим образом:
Система должна быть открытой, потому что закрытая изолированная система в соответствии со вторым законом термодинамики в конечном итоге должна придти в состояние, характеризуемое максимальным беспорядком или дезорганизацией.
Открытая система должна находиться достаточно далеко от точки термодинамического равновесия. Если система находится в точке равновесия, то она обладает максимальной энтропией и потому не способна к какой-либо организации: в этом положении достигается максимум её самодезорганизации. Если же система расположена вблизи или недалеко от точки равновесия, то со временем она приблизится к ней и в конце концов придёт в состояние полной дезорганизации.
Если упорядочивающим принципом для изолированных систем является эволюция в сторону увеличения их энтропии или усиления их беспорядка (принцип Больцмана), то фундаментальным принципом самоорганизации служит, напротив, возникновение и усиление порядка через флуктуации. Такие флуктуации, или случайные отклонения системы от некоторого среднего положения, в самом начале подавляются и ликвидируются системой. Однако в открытых системах благодаря усилению неравновесия эти отклонения со временем возрастают и в конце концов приводят к «расшатыванию» прежнего порядка и возникновению нового. Этот процесс обычно характеризуют как принцип организования порядка через флуктуации. Поскольку флуктуации носят случайный характер ( а именно с них начинается возникновение нового порядка и структуры) то становится ясным, что появление нового в мире всегда связано с действием случайных факторов.
В отличие от принципа отрицательной обратной связи, на котором основывается управление и сохранение динамического равновесия систем, возникновение самоорганизации опирается на диаметрально противоположный принцип - положительную обратную связь, согласно которому изменения, появляющиеся в системе, не устраняются, а напротив накапливаются и усиливаются, что и приводит в конце концов к возникновению нового порядка и структуры.
Процессы самоорганизации, как и переходы от одних структур к другим, сопровождаются нарушением симметрии. Мы уже видели, что при описании необратимых процессов пришлось отказаться от симметрии времени, характерной для обратимых процессов в механике. Процессы самоорганизации, связанные с необратимыми изменениями, приводят к разрушению старых и возникновению новых структур.
Самоорганизация может начаться лишь в системах обладающих достаточным количеством взаимодействующих между собой элементов и, следовательно, имеющих некоторые критические размеры. В противном случае эффекты от синергетического взаимодействия будут недостаточны для появления кооперативного (коллективного) поведения элементов системы и тем самым возникновения самоорганизации.
Перечисленные выше условия безусловно являются необходимыми для возникновения самоорганизации в различных природных системах. Но конечно же недостаточными. Так, в химических и биологических самоорганизующихся системах важная роль отводится факторам ускорения химических реакций (процессы катализа).
Многообразие материальных систем, охватывающих неживую и живую природу, пространство и время, человеческое общество, предполагает их функционирование в рамках единых законов природы. В разработку последних внесли свой вклад фундаментальные естественно-научные дисциплины - физика, химия, биология, а также математика.
Особую роль в описании структуры и принципов функционирования природных систем играют системный и эволюционный подходы. Прогресс науки в развитии этого направления определился лишь после широкого распространения идей и представлений о динамике открытых диссипативных систем, о самоорганизации открытых систем, о динамических открытых системах в биологии. Одним из ключевых положений, развиваемых в рамках системного подхода к описанию природных явлений, заключается в том, что поведение систем в зависимости от внешнего воздействия определяется обратными связями.
Одна из отраслей физики - термодинамика, выделяет три типа термодинамических систем: замкнутые, закрытые и открытые. Индивидуальные свойства этих систем нашли своё обобщение и теоретическое объяснение в законах и классической термодинамики. Согласно второму закону все естественные процессы необратимы и могут протекать только в одну сторону (в сторону увеличения беспорядка системы), из-за чего и возникает «стрела времени».
Новая термодинамика открытых систем дала исчерпывающее объяснение процессу самоорганизации и назвала те условия, которые являются необходимыми для его реализации. Например возникновение самоорганизации опирается на принцип положительной обратной связи, согласно которому изменения, появляющиеся в системе, не устраняются а напротив, накапливаются и усиливаются, что приводит к возникновению новой структуры системы.
Система, в которую поступает энергия, превращающаяся в тепло, получила название диссипативной открытой системы, основные свойства которой определяются составом структурных элементов, притоком энергии и факторами внешней среды.
На базе управления сложными системами с обратной связью, которая повышает степень внутренней организованности системы, возникла наука кибернетика.
Страницы: 1, 2